Optimization of SDC Interlayer for YSZ-Based IT-SOFCs

Article Preview

Abstract:

Inserting a porous samaria-doped ceria (SDC) interlayer between yttria-stabilized zirconia (YSZ) electrolyte and anode is an effective method to enhancing the performance of intermediate-temperature solid oxide fuel cells (IT-SOFCs). In this work, the microstructure and morphology of the SDC interlayer were optimized by varying its thickness and sintering temperature. Results show that the SDC interlayer fabricated by utilizing once screen printing method and then sintered at 1300 °C for 2 h obtains the best electrochemical performance. The resulting polarization resistance and anodic overpotential (at a current density of 0.05 Acm-2) were 0.84 Ωcm2 and 0.07 V at 800 °C in H2, reduced by factors of 4.7 and 5.6, respectively, when compared with the LSCM anode without the SDC interlayer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

69-72

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.V. Karpachev, A.T. Filyaev, Electrochemical kinetics in the case of a solid electrolyte, Elektrokhimiya 2 (1966) 1330-1332.

Google Scholar

[2] E.P. Murray, T. Tsai, S.A. Barnett, A direct-methane fuel cell with a ceria-based anode, Nature 400 (1999) 649-651.

DOI: 10.1038/23220

Google Scholar

[3] Y.B. Kim, T.P. Holme, T.M. Gür, F.B. Prinz, Surface-modified low-temperature solid oxide fuel cell, Adv. Funct. Mater. 21 (2011) 4684-4690.

DOI: 10.1002/adfm.201101058

Google Scholar

[4] B.H. Choi, I.W. Jang, H.J. Sung, Effects of microstructural functional layers on flat-tubular solid oxide fuel cells, Fuel Cells 13 (2013) 1088-1100.

DOI: 10.1002/fuce.201300136

Google Scholar

[5] S.P. Yoon, S.W. Nam, J. Han, T.H. Lim, S.A. Hong, S.H. Hyun, Effect of electrode microstructure on gas-phase diffusion in solid oxide fuel cells, Solid State Ionics 166 (2004) 1-11.

DOI: 10.1016/j.ssi.2003.10.010

Google Scholar

[6] L. Zhao, X. Zhang, B. He, B. Liu, C. Xia, Micro-tubular solid oxide fuel cells with graded anodes fabricated with a phase inversion method, J. Power Sources 196 (2011) 962-967.

DOI: 10.1016/j.jpowsour.2010.08.074

Google Scholar

[7] T. Tsai, S.A. Barnett, Increased solid-oxide fuel cell power density using interfacial ceria layers, Solid State Ionics 98 (1997) 191-196.

DOI: 10.1016/s0167-2738(97)00113-6

Google Scholar

[8] S.Y. Park, J.H. Ahn, C.W. Jeong, C.W. Na, R.H. Song, J.H. Lee, Ni-YSZ-supported tubular solid oxide fuel cells with GDC interlayer between YSZ electrolyte and LSCF cathode, Int. J. Hydrogen Energy 39 (2014) 12894-12903.

DOI: 10.1016/j.ijhydene.2014.06.103

Google Scholar

[9] G.B. Balazs, R.S. Glass, Ac impedance studies of rare earth oxide doped ceria, Solid State Ionics 76 (1995) 155-162.

DOI: 10.1016/0167-2738(94)00242-k

Google Scholar

[10] B.C.H. Steele, Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500 °C, Solid State Ionics 129 (2000) 95-110.

DOI: 10.1016/s0167-2738(99)00319-7

Google Scholar

[11] D. Mesguich, C. Aymonier, J.M. Bassat, F. Mauvy, E. You, J.J. Watkins, Low-temperature deposition of undoped ceria thin films in scCO2 as improved interlayers for IT-SOFC, Chem. Mater. 23 (2011) 5323-5330.

DOI: 10.1021/cm2012846

Google Scholar

[12] W. Lai, S.M. Haile, Impedance spectroscopy as a tool for chemical and electrochemical analysis of mixed conductors: A case study of ceria, J. Am. Ceram. Soc. 88 (2005) 2979-2997.

DOI: 10.1111/j.1551-2916.2005.00740.x

Google Scholar

[13] C. Sun, U. Stimming, Recent anode advances in solid oxide fuel cells, J. Power Sources 171 (2007) 247-260.

DOI: 10.1016/j.jpowsour.2007.06.086

Google Scholar

[14] S. He, H. Chen, R. Li, L. Ge, L. Guo, Effect of Ce0. 8Sm0. 2O1. 9 interlayer on the electrochemical performance of La0. 75Sr0. 25Cr0. 5Mn0. 5O3-δ-Ce0. 8Sm0. 2O1. 9 composite anodes for intermediate-temperature solid oxide fuel cells, J. Power Sources 253 (2014).

DOI: 10.1016/j.jpowsour.2013.12.071

Google Scholar

[15] R.J. Gorte, J.M. Vohs, Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons, J. Catal. 216 (2003) 477-486.

DOI: 10.1016/s0021-9517(02)00121-5

Google Scholar

[16] A. Babaei, L. Zhang, S.L. Tan, S.P. Jiang, Pd-promoted (La, Ca)(Cr, Mn)O3/GDC anode for hydrogen and methane oxidation reactions of solid oxide fuel cells, Solid State Ionics 181 (2010) 1221-1228.

DOI: 10.1016/j.ssi.2010.06.042

Google Scholar

[17] N.M. Sammes, Z. Cai, Ionic conductivity of ceria/yttria stabilized zirconia electrolyte materials, Solid State Ionics 100 (1997) 39-44.

DOI: 10.1016/s0167-2738(97)00306-8

Google Scholar

[18] X.D. Zhou, B. Scarfino, H.U. Anderson, Electrical conductivity and stability of Gd-doped ceria/Y-doped zirconia ceramics and thin films, Solid State Ionics 175 (2004) 19-22.

DOI: 10.1016/j.ssi.2004.09.040

Google Scholar