Graded Transitions Homogeneity for Ti-50.8%Ni Processed by ECAP

Article Preview

Abstract:

Ti-50.8%Ni shape memory alloy was subjected to four passes equal channel angular pressing (ECAP) with angle 120◦ via route Bc at 450°C. The deformation homogeneity was analyzed on planes across the thickness of the deformed sample by Deform-3D software. Two methods were used from the simulation model to quantify deformation homogeneity , including strain standard deviation (SSD) and inhomogeneity index (Ci). In addition, The deformation heterogeneity of ECAP was analyzed experimentally from microhardness inhomogeneity index ( HII) based on Vickers microhardness test results.In the present work, Ci and SSD had been testified to detect which one could give better results experimentally. It was demonstrated that the simulation results of SSD measurements were in good agreement with experimental results .

You might also be interested in these eBooks

Info:

Periodical:

Pages:

90-94

Citation:

Online since:

December 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Valiev, D. Gunderov, E. Prokofiev, V. Pushin, Y. Zhu, Mater. Trans., 49 (2008) 97-101.

DOI: 10.2320/matertrans.me200722

Google Scholar

[2] Y. Huang, T.G. Langdon, Mater. Today, 16 (2013) 85-93.

Google Scholar

[3] V.G. Pushin, V.V. Stolyarov, R.Z. Valiev, N.I. Kourov, N.N. Kuranova, E.A. Prokofiev, L.I. Yurchenko, Ann. Chim. Sci. Mat. , 27 (2002) 77-88.

Google Scholar

[4] R.Z. Valiev, T.G. Langdon, Prog. Mater. Sci., 51 (2006) 881-981.

Google Scholar

[5] M. Furukawa , Z. Horita , M. Nemoto , T.G. Langdon, Mater Sci, 36 (2001) 2835-2843.

Google Scholar

[6] S.K. Lu, H.Y. Liu , b.L. Yu , Y.L. Jiang , J.H. Su, Proc. Eng. , 12 (2011) 35-420.

Google Scholar

[7] F. Djavanroodi, B. Omranpour, M. Ebrahimi, M. Sedighi, Prog. Nat. Sci., 22 (2012) 452-460.

Google Scholar

[8] E.M. Nahed, A.S. Farouk, A.H. Mohamed , I.A. Mohamed, S.K. Hyoung, Mater. Sci. Eng. A 527 (2010) 1404-1410.

Google Scholar

[9] M. Osman, D. Zhang , Y. Tong , Y. Zheng , L. Li Advanced Materials Research, 1004-1005 (2014) 1204-1210.

Google Scholar

[10] I.Y. Khmelevskaya, S.D. Prokoshkin , I.B. Trubitsyna , M.N. Belousov , S.V. Dobatkin , E.V. Tatyanin , A.V. Korotitskiy , V. Brailovski , V.V. Stolyarov , E.A. Prokofiev, Mater. Sci. Eng. A, 481-482 (2008) 119–122.

DOI: 10.1016/j.msea.2007.02.157

Google Scholar

[11] S. Jie , W. Li-ming, Z. Xiao-ning , S. Xiao-gang , J. Hong , F. Zhi-guo , X. Chao-ying , M.H. WU, T. Nonferr. Metal Soc. , 22 (2012) 1839-1848.

Google Scholar

[12] S. Li , M.A.M. Bourke , I.J. Beyerlein, D.J. Alexander, B. Clausen, Mater. Sci. Eng. A, 382 (2004) 217-236.

Google Scholar

[13] F. Zaıri, B. Aour, J.M. Gloaguen, M. Naıt-Abdelaziz, J.M. Lefebvre, Comp. Mater. Sci. , 38 (2006) 202-216.

Google Scholar

[14] Z. Xiaona, H. Lin , L. Yanxiong, Mater. Sci. Eng. A, 535 (2012) 153-163.

Google Scholar

[15] N.E. Mahallawy, F.A. Shehata, M.A.E. Hameed, M.I.A.E. Aal, H.S. Kim, Materials Science and Engineering: A, 527 (2010) 1404-1410.

Google Scholar