Impact of Multi-Walled Carbon Nanotubes to Rye Seedlings

Article Preview

Abstract:

Multi-Walled Carbon Nanotubes (MWCNTs) cause suppression of rye seeds viability, however in high concentration (1 g/l) they stimulate increase in roots and stems by 20%. At the same time, in low concentrations of MWCNTs root growth suppression is observed, though stimulation of stem growth remains. MWCNTs affect activity of antioxidant enzymes of rye seedlings, thus the greatest stimulation is observed when low and average concentrations of MWCNTs are used. Activity of photosynthetic system of plants considerably increases only when the lowest of the studied concentrations of MWCNTs (0.1 mg/l) is used. Noted tendencies can be considered in further researches of phytotoxic and phytostimulating MWCNTs properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

237-241

Citation:

Online since:

February 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.S. Mauter, M. Elimelech, Environmental applications of carbon-based nanomaterials, Environ. Sci. Technol. 42 (2008) 5843-5859.

DOI: 10.1021/es8006904

Google Scholar

[2] S.R. Mousavi, M. Rezaei, Nanotechnology in agriculture and food production, J. Appl. Env. Biol. Sci. 10 (2011) 414-419.

Google Scholar

[3] G. Jia,H. Wang,L. Yan, X. Wang,R. Pei,T. Yan,Y. Zhao, X. Guo, Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene, Environ. Sci. Technol. 39 (2005) 1378-1383.

DOI: 10.1021/es048729l

Google Scholar

[4] A. Shvedova, V. Castranova, E. Kisin, D. Schwegler-Berry, A. Murray, V. Gandelsman, A. Maynard, P. Baron, Exposureto carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells, J. Tox. Environ. Health. 66 (2003).

DOI: 10.1080/713853956

Google Scholar

[5] C. Lin, B. Fugetsu, Y. Su, F. Watari, Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis T87 suspension cells, J. Hazard. Mater. 170 (2009) 578-583.

DOI: 10.1016/j.jhazmat.2009.05.025

Google Scholar

[6] M. Ghosh, A. Chakraborty, M. Bandyopadhyay, A. Mukherjee, Multi-walled carbon nanotubes (MWCNT): Induction of DNA damage in plant and mammalian cells, J. Hazard. Mater. 197 (2011) 327-336.

DOI: 10.1016/j.jhazmat.2011.09.090

Google Scholar

[7] M.V. Khodakovskaya, K. de Silva, A. S. Biris, E. Dervishi, H. Villagarcia, Carbon nanotubes induce growth enhancement of tobacco cells, ACS Nano. 6 (2012) 2128 – 2135.

DOI: 10.1021/nn204643g

Google Scholar

[8] X. Tan, C. Lin, B. Fugetsu, Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells, Carbon. 47 (2009) 3479-3487.

DOI: 10.1016/j.carbon.2009.08.018

Google Scholar

[9] F. Schwab, T. D. Bucheli, L.P. Lukhele, A. Magrez, B. Nowack, L. Sigg, K. Knauer, Are carbon nanotube effects on green algae caused by shading and agglomeration?Environ. Sci. Technol. 45 (2011) 6136-6144.

DOI: 10.1021/es200506b

Google Scholar

[10] Z. Long,J. Ji,K. Yang, D. Lin, F. Wu, Systematic and quantitative investigation of the mechanism of carbon nanotubes' toxicity toward algae, Environ. Sci. Technol. 46 (2012) 8458-8466.

DOI: 10.1021/es301802g

Google Scholar

[11] H. Chung, Y. Son, T. Yoon, S. Kim, W. Kim, The effect of multi-walled carbon nanotubes on soil microbial activity, Ecotoxicology and Environ. Safety. 74 (2011) 569–575.

DOI: 10.1016/j.ecoenv.2011.01.004

Google Scholar

[12] M. V. Khodakovskaya, B. Kim, J. N. Kim, M. Alimohammadi, E. Dervishi, T. Mustafa, C.E. Cernigla, Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community, Small. 9 (2013) 115-123.

DOI: 10.1002/smll.201201225

Google Scholar

[13] X. Wang, X. Liu, H. Han, Evaluation of antibacterial effects of carbon nanomaterials against copper-resistant Ralstoniasolanacearum, Colloid. Surface. B: Biointerfaces. 103 (2013) 136-142.

DOI: 10.1016/j.colsurfb.2012.09.044

Google Scholar

[14] M. Khodakovskaya, E. Dervishi, M. Mahmood, Y. Xu, Z. Li, F. Watanabe, A. S. Biris, Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth, ACS Nano. 3 (2009) 3221-3227.

DOI: 10.1021/nn900887m

Google Scholar

[15] S. Tripathi, S.K. Sonkar, S. Sarkar, Growth stimulation of gram (Cicerarietinum) plant by water soluble carbon nanotubes, Nanoscale. 3 (2011) 1176-1181.

DOI: 10.1039/c0nr00722f

Google Scholar

[16] A. Mondal, R. Basu, S. Das, P. Nandy, Beneficial role of carbon nanotubes on mustard plant growth: An agricultural prospect, J. Nanopart. Res. 13 (2011) 4519-4528.

DOI: 10.1007/s11051-011-0406-z

Google Scholar

[17] X. Wang, H. Han, X. Liu, X. Gu, K. Chen, D. Lu, Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticumaestivum) plants, J. Nanopart. Res. 14 (2012) 841.

DOI: 10.1007/s11051-012-0841-5

Google Scholar

[18] G. Ghodake, Y. D. Seo, D. Park, D.S. Lee, Phytotoxicity of carbon nanotubes assessed by brassica juncea and phaseolusmungo, J. of Nanoelectron. Optoelectron. 5 (2010) 157-160.

Google Scholar

[19] P. Begum, R. Ikhtiari, B. Fugetsu, M. Matsuoka, T. Akasaka, F. Watari, Phytotoxicity of multi-walled carbon nanotubes assessed by selected plant species in the seedling stage, Appl. Surface Sci. 262 (2012) 120-124.

DOI: 10.1016/j.apsusc.2012.03.028

Google Scholar

[20] P. Begum, B. Fugetsu, Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant, J. Hazard. Mater. 243 (2012) 212-222.

DOI: 10.1016/j.jhazmat.2012.10.025

Google Scholar

[21] E.A. Smirnova, A.A. Gusev, O.N. Zaitseva, E.M. Lazareva, G.E. Onishchenko, E.V. Kuznetsova, A.G. Tkachev, A.V. Feofanov, M.P. Kirpichnikov, Carbon nanotubes enter the cells and stimulate sprouts of esparcet Onobrychis arenaria (Kit. ). Ser., Acta naturae. 3 (2011).

DOI: 10.32607/20758251-2011-3-1-99-106

Google Scholar