Elastoplastic Invariant Relation for Deformation of Alkali-Halide Crystals

Article Preview

Abstract:

Plastic strain localization patterns in compression-strained alkali halide (NaCl, KCl, and LiF) crystals have been studied using a double-exposure speckle photography technique. The main parameters of strain localization autowaves at the linear stages of deformation hardening in alkali halide crystals have been determined. A quantitative relationship between the macroscopic parameters of plastic flow localization and microscopic parameters of strained alkali halide crystals has been established.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

340-344

Citation:

Online since:

February 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.B. Zuev, V.I. Danilov, S.A. Barannikova, Plastic Flow Macrolocalization Physics, Nauka Publ., Novosibirsk, (2008).

Google Scholar

[2] L.B. Zuev, V.I. Danilov, S.A. Barannikova, V.V. Gorbatenko, Autowave model of localized plastic flow of solids, Phys. Wav. Phen. 17 (2009) 1-10.

DOI: 10.3103/s1541308x09010117

Google Scholar

[3] L.B. Zuev, S.A. Barannikova, Evidence for the existence of localized plastic flow auto-waves generated in deforming metals, Natur. Sci. 2 (2010) 476-483.

DOI: 10.4236/ns.2010.25059

Google Scholar

[4] B.I. Smirnov, Dislocated Structure and Strengthening of Crystals, Nauka, Moscow, (1981).

Google Scholar

[5] S.A. Barannikova, M.V. Nadezhkin, L.B. Zuev, On the localization of plastic flow under compression of NaCl and KCl crystals, Phys. Solid State 51 (2009) 1142-1148.

DOI: 10.1134/s1063783409060109

Google Scholar

[6] S.A. Barannikova, M.V. Nadezhkin, L.B. Zuev, On the localization of plastic flow under compression of LiF crystals, Phys. Solid State 52 (2010) 1382-1385.

DOI: 10.1134/s1063783410070103

Google Scholar

[7] E.P. Zemskov, A. Yu. Loskutov, Oscillatory traveling waves in excitable media, J. Exp. Theor. Phys. 107 (2008) 344-349.

DOI: 10.1134/s1063776108080189

Google Scholar

[8] N.M. Melankholin, Methods for Investigating the Optical Properties of Crystals, Nauka, Moscow, (1970).

Google Scholar

[9] V.Z. Bengus, S.N. Komnik, Dependence of the yield point of potassium chloride crystals on the dimensions, Strength of Materials 5 (1973) 212-217.

DOI: 10.1007/bf00770295

Google Scholar

[10] A.K. Mitropol'skii, Statistical Calculation Techniques, GIFML, Moscow, (1961).

Google Scholar

[11] L.I. Mirkin, Reference Book on X-ray Diffraction Analysis, GIFML, Moscow, (1961).

Google Scholar

[12] O. Anderson, Lattice Dynamics, in: W. P. Mason (Eds. ), Physical Acoustics: Principles and Methods, Academic, New York, (1964).

Google Scholar

[13] M.P. Shaskol'skaya, Crystallography, Vysshaya Shkola, Moscow, (1976).

Google Scholar

[14] G.A. Malygin, Dislocation self-organization processes and crystal plasticity, Phys. Usp. 42 (1999) 887-916.

DOI: 10.1070/pu1999v042n09abeh000563

Google Scholar

[15] L.B. Zuev, S.A. Barannikova, V.I. Danilov, Autowave model of crystal plasticity: Macro and microdefects, Crystallogr. Rep. 54 (2009) 1011-1020.

DOI: 10.1134/s1063774509060169

Google Scholar

[16] L.B. Zuev, S.A. Barannikova, Plastic flow macrolocalization: autowave and quasi-particle, J. Mod. Phys. 1 (2010) 1-8.

DOI: 10.4236/jmp.2010.11001

Google Scholar