Dispersions of Engineered Nanoparticles in Physiological Liquids

Article Preview

Abstract:

Increasing production of nanomaterials makes the study of nanoparticles fate in the environment of immediate interest. Nanomaterials are known to radically change their properties when released into the environment. In this work, the ability of nanoparticles to form stable dispersions in physiological solutions has been demonstrated. The dispersions were prepared by mixing nanopowders of zinc (13.58 m2/g), copper (24.66 m2/g), aluminum oxides (54.75 m2/g), and zirconium dioxide (8.10 m2/g) with phosphate buffered saline, an isotonic solution of glucose and artificial lysosomal fluid. With the help of laser diffraction method and transmission electron microscopy it was shown that unstable suspensions (with the dispersoid size of 6...49 μm) and aggregative-stable lyosols (with the particles size of 20...300 nm) were formed in dispersions of nanoparticles in physiological media.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

363-369

Citation:

Online since:

February 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Buzea, I.I. Pacheco, K. Robbie, Nanomaterials and nanoparticles: sources and toxicity, Biointerphases. 2 (2007) 17-71.

DOI: 10.1116/1.2815690

Google Scholar

[2] S. Hashmi, Comprehensive Materials Processing, Elsevier, New York, (2014).

Google Scholar

[3] G. Oberdörster, E. Oberdörster, J. Oberdörster, Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles, Environ. Health Persp. 113, 7 (2005) 823-839.

DOI: 10.1289/ehp.7339

Google Scholar

[4] P. Kumar, A. Robins, S. Vardoulakis, R. Britter, A review of the characteristics of nanoparticles in the urban atmosphere and the prospects for developing regulatory controls, Atmos. Environ. 44 (2010) 5035-5052.

DOI: 10.1016/j.atmosenv.2010.08.016

Google Scholar

[5] X. He, W.G. Aker, J. Leszczynski, H. Hwang, Using a holistic approach to assess the impact of engineered nanomaterials inducing toxicity in aquatic systems, J. Food Drug Anal. 22 (2014) 128-146.

DOI: 10.1016/j.jfda.2014.01.011

Google Scholar

[6] E. Navarro, A. Baun, R. Behra, N.B. Hartmann, J. Filser, A. -J. Miao, A. Quigg, P.H. Santschi, L. Sigg, Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi, Ecotoxicology. 17 (2008) 372-386.

DOI: 10.1007/s10646-008-0214-0

Google Scholar

[7] S. Eduok, B. Martin, R. Villa, A. Nocker, B. Jefferson, F. Coulon, Evaluation of engineered nanoparticle toxic effect on wastewater microorganisms: Current status and challenges, Ecotox. Environ. Safety. 95 (2013) 1-9.

DOI: 10.1016/j.ecoenv.2013.05.022

Google Scholar

[8] R.D. Handy, F. von der Kammer, J.R. Lead, M. Hassellov, R. Owen, M. Crane, The ecotoxicology and chemistry of manufactured nanoparticles, Ecotoxicology. 17 (2008) 287-314.

DOI: 10.1007/s10646-008-0199-8

Google Scholar

[9] P. Sanderson, J.M. Delgado-Saborit, R.M. Harrison, A review of chemical and physical characterisation of atmospheric metallic nanoparticles, Atmos. Environ. 94 (2014) 353-365.

DOI: 10.1016/j.atmosenv.2014.05.023

Google Scholar

[10] Z. Gauptman, Yu. Grefer, H. Remane, Organic Chemistry, Himiya, Мoscow, (1979).

Google Scholar

[11] O.V. Karban, O.L. Khasanov, Investigation of zirconia nanoceramics microstructure, Phys. of Low-dimensional Struct. 3 (2003) 297-308.

Google Scholar

[12] Yu.A. Kotov, The electrical explosion of wire: a method for the synthesis of weakly aggregated nanopowders, Nanotechnol. in Russia. 4, 7-8 (2009) 415-424.

DOI: 10.1134/s1995078009070039

Google Scholar

[13] O.B. Nazarenko, Electroexplosive nanopowders: production, propertoes, application, Tomsk State University Ed., Tomsk, (2005).

Google Scholar

[14] A. Yu. Godymchuk, G.G. Savel`ev, D.V. Gorbatenko, Dissolution of copper nanopowders in inorganic biological media, Russ. J. Gen. Chem. 80, 5 (2010) 881-888.

DOI: 10.1134/s1070363210050026

Google Scholar

[15] W. Kreyling, M. Semmler, F. Erbe, Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low, J. Toxicol. Env. Health. 65A, 20 (2002) 1513-1530.

DOI: 10.1080/00984100290071649

Google Scholar

[16] J. Ni, Q. Wu, Y. Li, Z. Guo, G. Tang, D. Sun, F. Gao, J. Cai, Cytotoxic and radiosensitizing effects of nano-C 60 on tumor cells in vitro, J. Nanopart. Res. 10 (2008) 643-651.

DOI: 10.1007/s11051-007-9295-6

Google Scholar