Study of MWNTS Influence upon Liver Histological and Histochemical Parameters in Laboratory Mice: Preliminary Results

Article Preview

Abstract:

Preliminary evaluation of toxic effect of commercially manufactured carbon nanostructured material based on multi-walled carbon nanotubes (MWCNT) upon laboratory mice C57B6/DBA2 males was carried out. It was found that thirty-day oral administration of nanotubes in doses of 0.3 and 3 mg/kg has no effect on liver condition, while administration of 30 mg/kg leads to formation of inflammatory infiltrates together with hepatocyte structure modification. The obtained results are of potential interest for development of industrial safety standards in nanomaterial handling and for development of standards for reproductive toxicity of carbon nanomaterials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

376-383

Citation:

Online since:

February 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Navarro, A. Baun, R. Behra, N.B. Hartmann, J. Filser, A.J. Miao et al, Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology. 17 (2008) 372-386.

DOI: 10.1007/s10646-008-0214-0

Google Scholar

[2] T.S.Y. Chan, F. Nasser, C.H. St-Denis, H.S. Mandal, P. Ghafari, N. Hadjout-Rabi, N.C. Bols, X. Tang, Carbon nanotube compared with carbon black: effects on bacterial survival against grazing by ciliates and antimicrobial treatments, Nanotoxicology. 7 (2013).

DOI: 10.3109/17435390.2011.652205

Google Scholar

[3] N. Musee, M. Thwala, N. Nota, The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants, J. Environ. Monit. 13 (2011) 1164-1183.

DOI: 10.1039/c1em10023h

Google Scholar

[4] A.E. Porter, M. Gass, J.S. Bendall, K. Muller, A. Goode, J.N. Skepper, P.A. Midgley, M. Welland, Uptake of noncytotoxic acid-treated single-walled carbon nanotubes into the cytoplasm of human macrophage cells, ACS Nano. 3 (2009) 1485-1492.

DOI: 10.1021/nn900416z

Google Scholar

[5] J.K. Lee, B.C. Sayers, K. -S. Chun, H. -C. Lao, J.K. Shipley-Phillips, J.C. Bonner, R. Langenbach, Multi-walled carbon nanotubes induce COX-2 and iNOS expression via MAP Kinase-dependent and -independent mechanisms in mouse RAW264. 7 macrophages, Part. Fiber Toxicol. 9 (2012).

DOI: 10.1186/1743-8977-9-14

Google Scholar

[6] P. Jackson, N.R. Jacobsen, A. Baun, R. Birkedal, D. Kühnel, K.A. Jensen, U. Vogel, H. Wallin, Bioaccumulation and ecotoxicity of carbon nanotubes, Chem. Central J. 7 (2013) 1-21.

DOI: 10.1186/1752-153x-7-154

Google Scholar

[7] N. Kobayashi, M. Naya, M. Ema, S. Endoh, J. Maru, K. Mizuno, J. Nakanishi, Biological response and morphological assessment of individually dispersed multi-wall carbon nanotubes in the lung after intratracheal instillation in rats, Toxicol. 276 (2010).

DOI: 10.1016/j.tox.2010.07.021

Google Scholar

[8] J.G. Teeguarden, B.J. Webb-Robertson, K.M. Waters, A.R. Murray, E.R. Kisin, S.M. Varnum, J.M. Jacobs, J.G. Pounds, R.C. Zanger, A.A. Shvedova, Comparative proteomics and pulmonary toxicity of instilled single-walled carbon nanotubes, crocidolite asbestos, and ultrafine carbon black in mice, Toxicol. Sci. 120 (2011).

DOI: 10.1093/toxsci/kfq363

Google Scholar

[9] I. Huizar, A. Malur, J. Patel, M. McPeek, L. Dobbs, C. Wingard, B.P. Barna, M.J. Thomassen, The role of PPARγ in carbon nanotube-elicited granulomatous lung inflammation, Respiratory Research 14 (2013) 1-10.

DOI: 10.1186/1465-9921-14-7

Google Scholar

[10] D.B. Warheit, B.R. Laurence, K.L. Reed, D.H. Roach, G.A. Reynolds, T.R. Webb Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats, Toxicol. Sci. 77 (2004) 117-125.

DOI: 10.1093/toxsci/kfg228

Google Scholar

[11] V.E. Kagan, N.V. Konduru, W. Feng, B.L. Allen, J. Conroy, Y. Volkov, I.I. Vlasova, N.A. Belikova, N. Yanamala, A. Kapralov, Y.Y. Tyurina, J. Shi,. E.R. Kisin, A.R. Murray, J. Franks, D. Stolz, P. Gou, J. Klein-Seetharaman, B. Fadeel, A. Star, A.A. Shvedova, Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation, Nature Nanotechnol. 5 (2010).

DOI: 10.1038/nnano.2010.44

Google Scholar

[12] F.T. Andón, A.A. Kapralov, N. Yanamala, W. Feng, A. Baygan, B.J. Chambers, K. Hultenby, F. Ye, M.S. Toprak, B.D. Brandner, A. Fornara, J. Klein-Seetharaman, G.P. Kotchey, A. Star, A.A. Shvedova, B. Fadeel, V.E. Kagan, Biodegradation of single-walled carbon nanotubes by eosinophil peroxidase, Small. 9 (2013).

DOI: 10.1002/smll.201202508

Google Scholar

[13] Z. Lan, W. -X. Yang Nanoparticles and spermatogenesis: how do nanoparticles affect spermatogenesis and penetrate the blood–testis barrier, Nanomed. 7 (2012) 579-596.

DOI: 10.2217/nnm.12.20

Google Scholar

[14] Z. Liu, S. Tabakman, K. Welsher, H. Dai, Carbon nanotubes in biology and medicine: in vitro and in vivo. detection, imaging and drug delivery, Nano Res. 2 (2009) 85-120.

DOI: 10.1007/s12274-009-9009-8

Google Scholar

[15] S.Y. Madani, N. Naderi, O. Dissanayake, A. Tan, A.M. Seifalian, A new era of cancer treatment: carbon nanotubes as drug delivery tools, Int. J. Nanomed. 6 (2011) 2963-2979.

DOI: 10.2147/ijn.s16923

Google Scholar

[16] B.S. Wong, S.L. Yoong, A. Jagusiak, T. Panczyk, H.K. Ho, W.H. Ang, G. Pastorin, Carbon nanotubes for delivery of small molecule drugs, Adv. Drug. Deliv. Rev. 65 (2013) 1964-(2015).

DOI: 10.1016/j.addr.2013.08.005

Google Scholar

[17] A. Patlolla, B. McGinnis, P. Tchounwou, Biochemical and histopathological evaluation of functionalized single-walled carbon nanotubes in Swiss-Webster mice, J. Appl. Toxicol. 31 (2011) 75-83.

DOI: 10.1002/jat.1579

Google Scholar

[18] M.L. Schipper, N. Nakayama-Ratchford, C.R. Davis, N.W.S. Kam, P. Chu, Z. Liu, X. Sun, H. Dai, S.S. Gambhir, A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice, Nature Nanotechnol., 3 (2008) 216-221.

DOI: 10.1038/nnano.2008.68

Google Scholar

[19] S. Jain, V.S. Thakare, M. Das, C. Godugu, A.K. Jain, R. Mathur, K. Chuttani, A.K. Mishra Toxicity of multiwalled carbon nanotubes with end defects critically depends on their functionalization density, Chem. Res. Toxicol. 24 (2011) 2028-(2039).

DOI: 10.1021/tx2003728

Google Scholar

[20] L. Lacerda, H. Ali-Boucetta, M.A. Herrero, G. Pastorin, A. Bianco, M. Prato, K. Kostarelos, Tissue histology and physiology following intravenous administration of differenttypes of functionalized multiwalled carbon nanotubes, Nanomedicine (Lond. ). 3 (2008).

DOI: 10.2217/17435889.3.2.149

Google Scholar

[21] I.А. Vasyukova, А.А. Gusev, Т.О. Khaliullin, L.М. Fatkhutdinova, А. Yu. Ubogov, Multi-walled carbon nanotubes and their influence on masculine reproduction activity, Nanotechnol. and Occup. Health (in Russian: Nanotechnologii i ohrana zdorovya). 1 (2014).

Google Scholar

[22] A.A. Gusev, I.A. Polyakova, E.B. Gorsheneva, A.V. Emeliyanov, S.V. Shutova, O.N. Zayceva, A.V. Shuklinov, E.A. Snegin, A.G. Tkachev, A.V. Fedorov, T.V. Vasilieva, E.A. Smirnova, E.M. Lazareva, G.E. Onishenko, Reproductive toxicity of carbon nanostructured material - a promising carrier of drugs in laboratory mice, J. Phys.: Conf. Ser. 291 (2011).

DOI: 10.1088/1742-6596/291/1/012052

Google Scholar

[23] A.A. Gusev, I.A. Polyakova, E.B. Gorsheneva, A.G. Tkachev, A.V. Emeliyanov, S.V. Shutova, O.N. Zayceva, А A.V. Fedorov, T.V. Vasilieva, Sex differences in physiological effect of carbon nanostructured material as potential carrier of drugs: lab-scale experiments, Nauchniye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya Estestvenniye nauki (in Russian). 21 (2010).

DOI: 10.1088/1742-6596/291/1/012052

Google Scholar

[24] P.I. Sidorova, Use of laboratory animals in toxicity testing. Guidence, RAMN, Arhangelsk, 2002 (in Russian).

Google Scholar

[25] S.B. Fadeev, D.V. Volkov, Integral estimation of animals' state in surgery experiments, Vestnik OGU (in Russian). 1 (2013) 147-150.

Google Scholar

[26] Guide for the care and use of laboratory animals, Eighth Edition, The national academies press, Washington, (2011).

Google Scholar

[27] H. Hedrich, The Laboratory Mouse, Handbook of Experimental Animals, Academic Press, San Diego, (2012).

Google Scholar

[28] I.V. Sanotsky, Methods of toxicity and safety estimation of chemicals, Meditsina, Moskva, 1970 (in Russian).

Google Scholar

[29] D.S. Sarkisov, Yu.L. Petrov, Microscopic equipment, Meditsina, Moskva, 1996 (in Russian).

Google Scholar

[30] P.F. Rokitskiy, Biological statistics, third ed., Visheishaya shkola, Minsk, 1973 (in Russian).

Google Scholar

[31] L.A. Vasilyeva, Statistical methods in biology and farming, NGU Novosiborsk, 2007 (in Russian).

Google Scholar

[32] L. Tabet, C. Bussy, N. Amara, A. Setyan, A. Grodet, M. J Rossi., J.C. Pairon, J. Boczkowski, S. Lanone, Adverse effects of industrial multiwalled carbon nanotubes on human pulmonary cells, J. Toxicol. Environ. Health A. 72 (2009) 60-73.

DOI: 10.1080/15287390802476991

Google Scholar

[33] A.A. Shvedova, A. Pietroiusti, B. Fadeel, V.E. Kagan, Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress, Toxicol. Appl. Pharmacol. 261 (2012) 121-133.

DOI: 10.1016/j.taap.2012.03.023

Google Scholar