Effect of Plasma-Based Chemical Modification on Wettability of Polymer Materials for Cardiovascular Surgery

Article Preview

Abstract:

A method to modify polymer surface properties responsible for wettability and surface free energy has been proposed. Plasma-based chemical modification of polymer surfaces with gas discharges allows adjusting their functional properties. The main changes in polymer wettability occur within short-term exposure of polymer surfaces to pulsed plasma at atmospheric pressure (1-60 sec). The contact angle values for the modified polymers depend on the gaseous medium and the conditions of the plasma processing. Changing the power, the pulse repetition rate and plasma exposure time allow controlling the free surface energy, making the surface either hydrophobic or hydrophilic.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

419-423

Citation:

Online since:

February 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.A. Volozhin, Basic types of biocompatible materials, MSMSU Press, Moscow, (2010).

Google Scholar

[2] S.V. Sheremetev, E.M. Shteynberg, Application of functional polymers in medicine, SibAK Press, Kazan, (2012).

Google Scholar

[3] M. Bryjak, I. Gancarz, G. Pozniak, Plasma-modified porous membranes, Chem. Pap. 54(6b) (2000) 496-501.

Google Scholar

[4] T.D. Tran, S. Mori, M. Suzuki, Plasma modification of polyacrylonitrile ultrafiltration membrane, Thin Sol. Films. 515 (2007) 4148–4152.

DOI: 10.1016/j.tsf.2006.02.045

Google Scholar

[5] E.F. Castro Vidaurre, C.A. Achete, F. Gallo, D. Garcia, R. Simao, A.C. Habert, Surface modification of polymeric materials by plasma treatment, Mat. Res. 5 (2002) 37–41.

DOI: 10.1590/s1516-14392002000100006

Google Scholar

[6] M.A. Deminsky, V. Chorkov, G. Belov, Chemical Workbench – integrated environment for materials science, Comp. Mat. Sci. 28 (2003) 169–178.

DOI: 10.1016/s0927-0256(03)00105-8

Google Scholar

[7] M. Strobel, C.S. Lyons, K.L. Mittal, Plasma Surface Modification of Polymers. Relevance to Adhesion, VSP BV, Netherlands, (1984).

Google Scholar

[8] I.G. Kuznetsova, S.E. Severin, Application of lactic and glicolic acid sopolymers to obtain nanosized dosage forms, Drug Development Registration, Res. Prod. J. 5 (2013) 30–38.

Google Scholar

[9] M-E. Vlachopoulou, A. Tserepi, A low temperature surface modification assisted method for bonding plastic substrates, J. Micromech. Microeng. 19 (2009) 015007–015013.

DOI: 10.1088/0960-1317/19/1/015007

Google Scholar

[10] M.A. Efremov, V.I. Svettsov, V.V. Rybkin, Vacuum plasma processes and techniques, Ivanov State Chem. -Tech. Univ. Press (in Russian), Ivanov, (2006).

Google Scholar

[11] M.V. Zhuravlev, M.S. Slobodyan, B.G. Shubin, System for atmosphere hf volume discharge, Rus. Phys. J. 55, 456–458.

Google Scholar

[12] EasyDrop Contact Angle Measuring Instrument: Doubly simple, KRUSS Technical information, (2006).

Google Scholar

[13] D.K. Owens, R.C. Wendt, Estimation of the surface free energy of polymers, J. Appl. Polym. Sci. 13 (1969) 1741–1747.

DOI: 10.1002/app.1969.070130815

Google Scholar

[14] V.V. Kolesnichenko, D.N. Trofimov, Fluoropolymer covers. Experience and prospects of applying, Collection of scientific papers, RSC «Applied Chemistry», St. Petersburg, (2009).

Google Scholar

[15] Yu.P. Raizer, Gas discharge physics, Intellekt Publ., Moscow, (2009).

Google Scholar

[16] N.A. Yavorovskiy, Ya.I. Kornev, S.V. Preis, Pulse barrier discharge as a method of water treatment: active oxidizer particles in waterair flow, Bull. of Tomsk Polytech. Univ. 309 (2006) 108–112.

Google Scholar

[17] I.A. Grishina, V.A. Ivanov, L.M. Kovrizhnykh, Plasma physics and plasma methods, Succ. of Appl. Phys. 1 (2013) 415–438.

Google Scholar

[18] S.A. Golovyatinskiy, Modification of polymeric surface by pulse plasma of atmospheric pressure, Vestn. Hkarkov. Univ. 24 (2004) 80–86.

Google Scholar