[1]
W. Wang, X. Chen, and S. Efrima, Silver Nanoparticles Capped by Long-Chain Unsaturated Carboxylates, J. Phys. Chem. B, vol 103, pp.7238-7246, (1999).
DOI: 10.1021/jp991101q
Google Scholar
[2]
E. Chen, H. Su , W. Zhang and T. Tan, A novel shape-controlled synthesis of dispersed silver nanoparticles by combined bioaffinity adsorption and TiO2 photocatalysis, Powder Tech., vol. 212, p.166–172, (2011).
DOI: 10.1016/j.powtec.2011.05.008
Google Scholar
[3]
V. Gopinath, D. MubarakAli, S. Priyadarshini, N. Meera Priyadharsshini, N. Thajuddin and P. Velusamy, Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: A novel biological approach, Colloids and Surfaces B: Biointerfaces, vol. 96, p.69– 74, (2012).
DOI: 10.1016/j.colsurfb.2012.03.023
Google Scholar
[4]
N. Vigneshwaran, A. A. Kathe, P. V. Varadarajan, R. P. Nachane, and R. H. Balasubramanya, Silver-Protein (Core-Shell) Nanoparticle Production Using Spent Mushroom Substrate, Langmuir, vol. 23, pp.7113-7117, (2007).
DOI: 10.1021/la063627p
Google Scholar
[5]
C. F. Li and S.H. Zhong, "Study on application of membrane reactor in direct synthesis DMC from CO2 and CH3OH over Cu-KF/MgSiO catalyst, Catal. Today, vol. 82, pp.83-90 , (2003).
DOI: 10.1016/s0920-5861(03)00205-0
Google Scholar
[6]
S. A. Bocanegra, A. D. Ballarini, O. A. Scelza and S. R. de Miguel, the influence of the synthesis routes of MgAl2O4 on its properties and behaviour as support of dehydrogenation catalysts, Materials Chem. Phy., vol. 111, pp.534-541, (2008).
DOI: 10.1016/j.matchemphys.2008.05.002
Google Scholar
[7]
N. Rajalakshmi, N. Lakshmi and K. S. Dhathathreyan, Nano titanium oxide catalyst support for proton exchange membrane fuel cells, Int. J. Hydrogen Energy, vol. 33 pp.7521-7526, (2008).
DOI: 10.1016/j.ijhydene.2008.09.032
Google Scholar
[8]
E. Y. Kaneko, S. H. Pulcinelli, V. Teixeira da Silva and C. V. Santilli, Sol-Gel synthesis of Titania-Alumina catalyst supports, App. Catal. A: General, Vol. 235, p.71 – 78, (2002).
DOI: 10.1016/s0926-860x(02)00236-3
Google Scholar
[9]
A. Fujishima, T. N. Rao and D. A. Tryk, Titanium Dioxide photocatalysis, J. Photochem. Photobiol. C: Photochemistry Reviews, Vol. 1, pp.1-21, (2000).
Google Scholar
[10]
D. A. Tryk, A. Fujishima and K. Honda, Recent topics in photoelectrochemistry: Achievements and future prospects, Electrochim Acta, Vol. 45, pp.2363-2376, (2000).
DOI: 10.1016/s0013-4686(00)00337-6
Google Scholar
[11]
A. Bankar, B. Joshi, A. Ravi Kumar, S. Zinjarde, Banana peel extract mediated novel route for the synthesis of silver nanoparticles, Colloids and Surfaces A: Physicochem. Eng. Aspects, vol. 368, p.58–63, (2010).
DOI: 10.1016/j.colsurfa.2010.07.024
Google Scholar
[12]
David D. Evanoff, Jr., George Chumanov, Size-Controlled Synthesis of Nanoparticles. 1. Silver-Only, Aqueous Suspensions via Hydrogen Reduction, J. Phys. Chem. B, vol. 108, pp.13948-13956, (2004).
DOI: 10.1021/jp047565s
Google Scholar
[13]
N. N. Martınez, G. A. M. Castanon, A. A. Pina, F. M. Gutierrez, J. R. M. Mendoza and F. Ruiz, Characterization of silver nanoparticles synthesized on titanium dioxide fine particles, Nanotechnology, Vol. 19, pp.065711-065719, (2008).
DOI: 10.1088/0957-4484/19/6/065711
Google Scholar
[14]
A. Di Poala, V. Augugliaro, L. Palmisano, G. Pantaleo, E. Savinov, Heterogenious photocatalytic degradation of Nitrophenols, J. Photochem photobiol A: Chem., Vol. 155, pp.207-214, (2003).
DOI: 10.1016/s1010-6030(02)00390-8
Google Scholar