[1]
Abu Bakar NHH, Ismail J, Abu Bakar M (2007) Synthesis and characterization of silver nanoparticles in natural rubber. Mater Chem Phys 104: 276–283.
DOI: 10.1016/j.matchemphys.2007.03.015
Google Scholar
[2]
Agalya Priyadarshini K, Murugan K, Panneerselvam C, Ponarulselvam S, Jiang- Shiou Hwang, Nicoletti M (2012).
Google Scholar
[3]
Ahmad N, Sharma S, Alam MK, Singh VN, Shamsi SF, Mehta BR, Fatma A (2010) Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf B: Biointerfaces 81: 81–86.
DOI: 10.1016/j.colsurfb.2010.06.029
Google Scholar
[4]
Akinrinmade JF, Oyeleye OA (2010) Antimicrobial efficacy and tissue reaction of Euphorbia hirta ethanolic extract on canine wounds. Afr J Biotechnol 9: 5028-5031.
Google Scholar
[5]
Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99: 466–472.
DOI: 10.1007/s00436-006-0182-3
Google Scholar
[6]
Amer A, Mehlhorn H (2006b) Persistency of larvicidal effects of plant oil extracts under different storage conditions. Parasitol Res 99: 473–477.
DOI: 10.1007/s00436-006-0183-2
Google Scholar
[7]
Ankamwar B, Damle C, Absar A, Mural S (2005) Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organicsolution. J Nanosci Nanotechnol 10: 1665–1671.
DOI: 10.1166/jnn.2005.184
Google Scholar
[8]
Arangasamy L, Munusamy V (2008) Tapping the unexploited plant resources for the synthesis of silver nanoparticles. Afr J Biotechnol 7: 3162–3165.
Google Scholar
[9]
Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A (2009) Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloid Surf A 339: 134–139.
DOI: 10.1016/j.colsurfa.2009.02.008
Google Scholar
[10]
Brause R, Möltgen H, Kleinermanns K (2002) Characterization of laser ablated and chemically reduced silver colloids in aqueous solution by UV/VIS spectroscopy and STM/SEM microscopy. Appl Phys B: 75(6–7): 711-716.
DOI: 10.1007/s00340-002-1024-3
Google Scholar
[11]
Carvalho LH, Branda˜ o MGL, Santos-Filho, D, Lopes JLC, Krettli AU (1991).
Google Scholar
[12]
Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22: 577–583.
DOI: 10.1021/bp0501423
Google Scholar
[13]
Chen L, Evans JR (2009) Arched structures created by colloidal droplets as they dry. Langmuir 25: 11299–11301.
DOI: 10.1021/la902918m
Google Scholar
[14]
Chen L (1991) Studies on the Polyphenols from leaves of Euphorbia hirta L. [J]. China J Chin Mater Med: 16(1): 38-39.
Google Scholar
[15]
El Tahir A, Satti GM, Khalid SA (1999) Antiplasmodial activity of selected Sudanese medicinal plants with emphasis on Maytenus senegalensis (Lam. ). Exell J Ethnopharmacol 64(3): 227–233.
DOI: 10.1016/s0378-8741(98)00129-9
Google Scholar
[16]
Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X., Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3: 6.
DOI: 10.1186/1477-3155-3-6
Google Scholar
[17]
Elumalai EK, Prasad TNVKV, Hemachandran J, Therasa SV, Thirumalai T, David E (2010) Extracellular synthesis of silver nanoparticles using leaves of Euphorbia hirta and their antibacterial activities. J Pharm Sci Res 2(9): 549–554.
Google Scholar
[18]
Gasquet M, Delmas F, Timond-David P (1993) Evaluation in vitro and in vivo of a traditional antimalarial drug 'Malarial 5',. Fitoterapia 64: 423–426.
Google Scholar
[19]
Gong P, Li H, He X, Wang K, Hu J, Tan W, Zhang S, Yang X (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnol 18: 285604.
DOI: 10.1088/0957-4484/18/28/285604
Google Scholar
[20]
Goodsell DS (2004) Bionanotechnology: lessons from nature. Wiley-Liss, Hoboken.
Google Scholar
[21]
Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18: 105104.
DOI: 10.1088/0957-4484/18/10/105104
Google Scholar
[22]
Johnson PB, Abdurahman EM, Tiam EA, Abdu-Aguye I, Hussaini IM (1999) Euphorbia hirta leaf extracts increase urine output and electrolytes in rats. J Ethnopharmacol 65: 63-69.
DOI: 10.1016/s0378-8741(98)00143-3
Google Scholar
[23]
Kayembe JS, Taba KM, Ntumba K, Tshiongo MTC, Kazadi TK (2010) In vitro anti-malarial activity of 20 quinones isolated from four plants used by traditional healers in the Democratic Republic of Congo. J Med Plant Res 4(11): 991–994.
Google Scholar
[24]
Khandelwal N, Abhijeet S, Devendra J, Upadhyay MK, Verma HN (2010) Green synthesis of silver nanoparticles using Argimone mexicana leaf extract and evaluation of their antimicrobial activities. Dig J Nanomat Biostruct 5: 483–489.
Google Scholar
[25]
Kiritikar KR, Basu DJ. in: K.S. Mhaskar, E. Blatter, J.F. Caius (Eds. ) (2000). Illustrated Indian Medicinal Plants, 9, Satguru Publications, New Delhi pp.3031-3033.
Google Scholar
[26]
Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N (2010).
Google Scholar
[27]
Lanhers MC, Fleurentin J, Dorfman P, Mortier F, Pelt JM (1991) Analgesic, antipyretic and anti-inflammatory properties of Euphorbia hirta. Planta Med 57: 225-231.
DOI: 10.1055/s-2006-960079
Google Scholar
[28]
Mallavadhani UV, Narasimhany K (2009) Two novel butanol rhamnosides from an Indian traditional herb, Euphorbia hirta [J]. Nat Prod Res 23(7): 644-651.
DOI: 10.1080/14786410802214009
Google Scholar
[29]
Mishra K, Dash AP, Swan BK, Dey N (2009) Antimalarial activities of Andrographis paiculata and Hedyotis corymbosa extracts and their combination with curcumin. Malar J 8: 26 doi: 10. 1186/1475-2875-8-2-6.
DOI: 10.1186/1475-2875-8-26
Google Scholar
[30]
Moaddab S, Hammed Ahari, Delavar Shahbazzadeh, Abbas Ali Motallebi, Amir Ali Anvar, Jaffar Rahman-Nya, Mohamaad Reza Shokrgozar (2011) Toxicity Study of Nanosilver (Nanocid) on Osteoblast Cancer Cell Line. Int Nano Lett 1: 11-16.
Google Scholar
[31]
Pabon A, Carmona J, Maestre A, Camargo M, Blair S (2002) Inhibition of P. falciparum by steroids isolated from Solanum nudum. Phytother Res 16: 59–62.
DOI: 10.1002/ptr.1035
Google Scholar
[32]
Panneerselvam C, Ponarulselvam S, Murugan K (2011) Potential Anti-plasmodial activity of synthesized silver nanoparticle using Andrographis paniculata Nees. Arc App Sci Res 3(6): 208-217.
Google Scholar
[33]
Patil SB, Naikwade NS, Magdum CS (2009) Review on phytochemistry and pharmacological aspects of Euphorbia hirta Linn. J Pharmacol Res Health Care 1: 113-133.
Google Scholar
[34]
Ponarulselvam S, Panneerselvam C, Murugan K, Aarthi N, Kalimuthu K, Thangamani S (2012) Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian-Pacific J Trop Biomed 574-580.
DOI: 10.1016/s2221-1691(12)60100-2
Google Scholar
[35]
Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K (2008a) Larvicidal activity of some Euphorbiaceae plant extracts against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 102: 867–873.
DOI: 10.1007/s00436-007-0839-6
Google Scholar
[36]
Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K (2008b) Isolation and identification of mosquito larvicidal compound from Abutilon indicum (Linn. ) Sweet. Parasitol Res 102: 981–988.
DOI: 10.1007/s00436-007-0864-5
Google Scholar
[37]
Rajkumar G, Rahuman AA (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vector. Acta Trop doi: 10. 1016/j. actatrop ica. 2011. 03. 003.
DOI: 10.1016/j.actatropica.2011.03.003
Google Scholar
[38]
Raut RW, Kolekar, Niranjan S, Lakkakula, Jaya R, Mendhulkar, Vijay D, Kashid, Sahebrao B (2010) Extracellular synthesis of silver nanoparticles using dried leaves of Pongamia pinnata (L. ) pierre. Nano-Micro Lett 2: 106–113.
DOI: 10.1007/bf03353627
Google Scholar
[39]
Raveendran P, Fu J, Wallen SL (2003) Completely green, synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125: 13940–13941.
DOI: 10.1021/ja029267j
Google Scholar
[40]
Rieckman KH (1980).
Google Scholar
[41]
Saxena A, Tripathi RM, Singh RP (2010) Biological synthesis of silver nanoparticles using onion (Allium cepa) extract and their antibacterial activity. Dig J Nanomater Bios 5(2): 427–432.
Google Scholar
[42]
Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275: 496–502.
DOI: 10.1016/j.jcis.2004.03.003
Google Scholar
[43]
Sharma NC, Sahi SV, Nath S, Parsons JG, Gardea-Torresdey JL, Pal T (2007) Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix embedded nanomaterials. Environ Sci Technol 41: 5137–5142.
DOI: 10.1021/es062929a
Google Scholar
[44]
Shrivastava S, Dash D (2010) Label-free colorimetric estimation of proteins using nanoparticles of silver. Nano-Micro Lett 2: 164– 168.
DOI: 10.1007/bf03353636
Google Scholar
[45]
Sinha S, Pan I, Chanda P, Sen SK (2009) Nanoparticles fabrication using ambient biological resources. J Appl Biosci 19: 1113–1130.
Google Scholar
[46]
Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275: 177–182.
DOI: 10.1016/j.jcis.2004.02.012
Google Scholar
[47]
Thakkar KN, Mhatre SS, Parikh RY (2009) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6: 257–262.
Google Scholar
[48]
Trager W, Jensen Jb (1978) Cultivation of Malarial Parasites. Nature 273: 621-2.
Google Scholar
[49]
Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya R (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Materials Letters 61: 1413-1418.
DOI: 10.1016/j.matlet.2006.07.042
Google Scholar
[50]
Vilchis-Nestor AR, Sanchez-Mendieta V, Camacho-Lopez MA, Gomez- Espinosa RM, Camacho-Lopez MA, Arenas-Alatorre JA (2008).
Google Scholar
[51]
Willcox ML, Bodeker G, Rasoanaivo P (2004) Traditional medicinal plant and malaria. City, Country: CRC press.
Google Scholar
[52]
Wright CW, Phillipson JD (1990) Natural products and the development of selective antiprotozoal drugs. Phytother Res 4: 127–139.
DOI: 10.1002/ptr.2650040402
Google Scholar
[53]
WU Yi, QU Wei, GENG Di, LIANG Jing-Yu, LUO Yang-Li (2012) Phenols and flavonoids from the aerial part of Euphorbia hirta. Chinese J Nat Med 10(1): 0040−0042.
DOI: 10.3724/sp.j.1009.2012.00040
Google Scholar