[1]
W.C. Liu, L.K. Jiang, L. Cao, J. Mei, G.H. Wu, S. Zhang, L. Xiao, S.H. Wang, W.J. Ding. Fatigue behavior and plane-strain fracture toughness of sand-cast Mg–10Gd–3Y–0. 5Zr magnesium alloy Mater & Des. 59(2014) 466-474.
DOI: 10.1016/j.matdes.2014.03.026
Google Scholar
[2]
A.A. Luo, Magnesium casting technology for structural applications. J. Magnes. Alloys 1(2013)2–22.
Google Scholar
[3]
H. Friedrich, B. Mordike, Magnesium Technology, Springer Press, Berlin, (2006).
Google Scholar
[4]
B. Smola, I. Stulíková, F. von Buch, B. Mordike, Structural aspects of high performance Mg alloys design Mater. Sci. Eng. A 324(2002) 113–117.
DOI: 10.1016/s0921-5093(01)01291-6
Google Scholar
[5]
P. Apps, H. Karimzadeh, J. King, G. Lorimer, Scripta Mater. Precipitation reactions in Magnesium-rare earth alloys containing Yttrium, Gadolinium or Dysprosium. 48 (2003)1023–1028.
DOI: 10.1016/s1359-6462(02)00596-1
Google Scholar
[6]
L. Rokhlin, Magnesium Alloys Containing Rare Earth Metals, Taylor and Francis, London, (2003).
Google Scholar
[7]
Q.M. Peng, X.L. Hou, L.D. Wang, Y.M. Wu, Z.Y. Cao, L.M. Wang, Microstructure and mechanical properties of high performance Mg–Gd based alloys. Materials & Design 30(2009) 292–296.
DOI: 10.1016/j.matdes.2008.04.069
Google Scholar
[8]
Q. Peng, J. Wang, Y. Wu, L. Wang, Microstructure and mechanical properties of high performance Mg–Gd based alloys. Mater. Sci. Eng. A 433(2006) 133–138.
Google Scholar
[9]
Itoi T, Seimiya T, Kawamura Y, Hirohashi M. Long period stacking structures observed in Mg97Zn1Y2 alloy. Scripta Mater 51(2004)107–11.
DOI: 10.1016/j.scriptamat.2004.04.003
Google Scholar
[10]
M. Matsuda, S. Ii, Y. Kawamura, Y. Ikuhara, M. Nishida. Variation of long-period stacking order structures in rapid solidified Mg97Zn1Y2 alloy. Mater. Sci. Eng. A; 393(2005)269–74.
DOI: 10.1016/j.msea.2004.10.040
Google Scholar
[11]
Y. Kawamura, M. Yamasaki. Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure. Mater. Trans. 48(2007)2986–92.
Google Scholar
[12]
M. Yamasaki, M. Sasaki, M. Nishijima, K. Hiraga, Y. Kawamura. Formation of 14H long period stacking ordered structure and profuse stacking fault in Mg–Zn–Gd alloys during isothermal ageing at high temperature. Acta. Mater. 55(2007) 6798–805.
DOI: 10.1016/j.actamat.2007.08.033
Google Scholar
[13]
Y. Kawamura, K. Hayashi, A. Inoue, T. Masumoto. Rapidly Solidified Powder Metallurgy Mg97Zn1Y2 Alloys with Excellent Tensile Yield Strength above 600 MPa Mater. Trans. 42(2001)1172–6.
DOI: 10.2320/matertrans.42.1172
Google Scholar
[14]
M. Yamasaki, T. Anan, S. Yoshimoto, Y. Kawamura. Mechanical properties of warm-extruded Mg–Zn–Gd alloy with coherent 14H long periodic stacking ordered structure precipitate. Scripta Mater 53(2005)799–803.
DOI: 10.1016/j.scriptamat.2005.06.006
Google Scholar
[15]
S. Yoshimoto, M. Yamasaki, Y. Kawamura. Mechanical properties of warm-extruded Mg–Zn–Gd alloy with coherent 14H long periodic stacking ordered structure precipitate. Mater. Trans. 47(2006) 959–65.
DOI: 10.1016/j.scriptamat.2005.06.006
Google Scholar
[16]
T. Morikawa, K. Kaneko, K. Higashida, D. Kinoshita, M. Takenaka, Y. Kawamura. The Fine-Grained Structure in Magnesium Alloy Containing Long-Period Stacking Order Phase. Mater Trans 49(2008)1294–7.
DOI: 10.2320/matertrans.mc2007110
Google Scholar
[17]
K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H.Y. Yasuda, Y. Umakoshi. Plastic deformation behavior of Mg97Zn1Y2 extruded alloys. Trans. Nonferrous. Met. Soc. China 20(2010)1259–68.
DOI: 10.1016/s1003-6326(09)60288-0
Google Scholar
[18]
K. Hagiharaa, A. Kinoshitab, Y. Suginob, M. Yamasakic, Y. Kawamurac, H.Y. Yasudab, Y. Umakoshib Effect of long-period stacking ordered phase on mechanical properties of Mg97Zn1Y2 extruded alloy. Acta Mater. 58 (2010) 6282–6293.
DOI: 10.1016/j.actamat.2010.07.050
Google Scholar
[19]
M. Nishijima, K. Hiraga, M. Yamasaki. The Structure of Guinier-Preston Zones in an Mg-2 at%Gd-1 at%Zn Alloy Studied by Transmission Electron Microscopy. Mater. Trans 49 (2008): 227~229.
DOI: 10.2320/matertrans.mep2007257
Google Scholar
[20]
D. J Li., X. Q Zeng., J Dong, C. Q Zhai, W. J Ding. Microstructure evolution of Mg–10Gd–3Y–1. 2Zn–0. 4Zr alloy during heat-treatment at 773 K. J. Alloys Compd. 468(2009) 164-169.
DOI: 10.1016/j.jallcom.2008.01.078
Google Scholar
[21]
S.Q. Liang, D. K. Guan, X. P. Tan, L. Chen, Y. Tang. Effect of isothermal aging on the microstructure and properties of as-cast Mg–Gd–Y–Zr alloy. Mater Sci and Eng.A. 528(2011) 1589-1595.
DOI: 10.1016/j.msea.2010.10.082
Google Scholar
[22]
L. Zheng, C. M. Liu, Y. C. Wan, P. W. Yang, X. Shu. Microstructures and mechanical properties of Mg–10Gd–6Y–2Zn–0. 6Zr(wt. %) alloy. J of Alloys Compds, 509(2011) 8832-8839.
DOI: 10.1016/j.jallcom.2011.06.090
Google Scholar
[23]
L. Zhang, X. P. Dong, J. Q. Li, W. J. Wang, A. H. Wang, Z. T. Fan. Microstructure and mechanical properties of as-cast and heat treated Mg-15Gd-3Y alloy. J of Rare Earths. 29 (2011) 77-82.
DOI: 10.1016/s1002-0721(10)60395-x
Google Scholar
[24]
X.L. Zhang, Z.H. Wang, W. B Du, K Liu, S. B Li. Microstructures and mechanical properties of Mg–13Gd–5Er–1Zn–0. 3Zr alloy Mater and Des 58 (2014) 277–283.
DOI: 10.1016/j.matdes.2014.01.058
Google Scholar