Hexacarboxylate-Bridged Dicopper (II) Paddle-Wheel-Based 3-D Metal-Organic Framework: Synthesis, Structure

Article Preview

Abstract:

Employed isophthalic acid and Quinoxaline as co-ligands, a new 3D metal-organic framework [{Cu2(IPT)2(QA)2}6]n ((H2IPT= isophthalic acid, QA = Quinoxaline) had been prepared under hydrothermal condition. The compound crystallizes in the Rhombohedral space group R-3c, with cell parameters, a = 30.099(4) Å, b = 30.099(4) Å, c = 18.190(4) Å, a= β = γ = 90˚, V = 14271(4) nm3 and Z = 12. This 3D complex based on rhomboid-shaped structural unit [{Cu2(IPT)2(QA)2}6] shows unusual USF-1 topology. On the basis of the results of TG/DTA analyses, the structure is thermally stable up to 300 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

314-317

Citation:

Online since:

February 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.R. Li, R.J. Kuppler, H.C. Zhou, Chem. Soc. Rev. 38 (2009) 1477–1504.

Google Scholar

[2] M. Yoshizawa, M. Nagao, K. Umemoto, K. Biradha, M. Fujita, S. Sakamoto, K. Yamaguchi, Chem. Commun. 15 (2003) 1808–1809.

Google Scholar

[3] S.H. Cho, B. Ma, S.T. Nguyen, J.T. Hupp, T.E. Albrecht-schmitt, Chem. Commun. 24 (2006) 2563–2565.

Google Scholar

[4] M. Chen, S.S. Chen, T.A. Okamura, Z. Su, M.S. Chen, Y. Zhao, N. Ueyama, Cryst. Growth. Des. 11 (2011) 1901–(1912).

Google Scholar

[5] D. Sun, Z.H. Wei, C.F. Yang, D.F. Wang, N. Zhang, R.B. Huang, L.S. Zheng, CrystEngComm. 13 (2011) 1591–1601.

Google Scholar

[6] S.I. Noro, R. Kitaura, M. Kondo, S, Kitagawa, T. Ishii, H. Matsuzaka, M. Yamashita, J. Am. Chem. Soc. 124 (2002) 2568–2583.

DOI: 10.1021/ja0113192

Google Scholar

[7] F. Dai, H. He, D. Sun, J. Am. Chem. Soc. 130 (2008) 14064–14065.

Google Scholar

[8] B. Moulton, J.J. Lu, A. Mondal, M.J. Zaworotko, Chem. Commun. 9 (2001) 863–864.

Google Scholar

[9] M. Eddaoudi, J. Kim, J.B. Wachter, H.K. Chae, M. O'Keeffe, O.M. Yaghi, J. Am. Chem. Soc. 123 (2001) 4368–4372.

Google Scholar

[10] J.J. Perry, G.J. McManus, M.J. Zaworotko, Chem. Commun. 22 (2004) 2534–2535.

Google Scholar

[11] M. Kondo, Y. Takashima, J. Seo, S. Kitagawa, S. Furukawa, CrystEngComm. 12 (2010) 2350–2353.

Google Scholar

[12] H. Abourahma, G.J. Bodwell, J.J. Lu, B. Moulton, I.R. Pottie, R.B. Walsh, M.J. Zaworotko, Cryst. Growth Des. 3 (2003) 513–519.

Google Scholar

[13] D.X. Xue, Y.Y. Lin, X.N. Cheng, X. M Chen, Cryst. Growth Des. 7 (2007) 1332–1336.

Google Scholar

[14] T.D. Graham, B. Mark, E.K. Walter, R.L. David, Y.T. Roger, J. Am. Chem. Soc. 131 (2009) 18192–18193.

Google Scholar

[15] V.P. Andrey, M.A.S. Liban, V. Dragoslav, D. Deepak, J. Cameron, M. Philip, A. Simon, Chem. Commun. 46 (2010) 8546–8548.

Google Scholar

[16] R.C. Marlyn, C. Indranil, G.R. Raphael, Cryst. Growth Des. 10 (2010) 2606–2612.

Google Scholar

[17] H. Araki, K. Tsuge, Y. Sasaki, S. Ishizaka, N. Kitamura, Inorg. Chem. 44 (2005) 9667−9675.

Google Scholar

[18] K. Tomono, Y. Tsunobuchi, K. Nakabayashi, S. Ohkoshi, Inorg. Chem. 49 (2010) 1298–1300.

Google Scholar

[19] F.H. Allen, Acta Crystallogr. SectB. 58 (2002) 380-388.

Google Scholar