Novel Sorbents and their Sorptive Properties for Mercury Emissions Control of Coal-Fired Flue Gas

Article Preview

Abstract:

Mercury is a striking pollutant and mercury emissions from coal-fired power plants are under environmental regulation. The primary objective of mercury abatement in coal-fired power plants is to remove elemental mercury. Sorbent injection is one of the major commercially available technologies for mercury control from coal fired power plants and activated carbon is the most commonly employed sorbent. Modified activated carbons have been found to exhibit high mercury emission reduction efficiency. Noble metal and metal oxides also showed excellent mercury adsorption capacity. Fly ash, a waste product from coal-fired solid wastes, may be an excellent adsorbent owing to its low cost and abundance. There is no consistent evidence for the adsorption mechanism of mercury on modified activated carbon; a popular view is that the sorption mechanism is combination of physisorption and chemisorption.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

332-336

Citation:

Online since:

February 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Pirrone, S. Cinnirella, X. Feng, R. Finkelman, H. Friedli, J. Leaner, R. Mason, A. Mukherjee, G. Stracher, D. Streets, Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics 10 (2010).

DOI: 10.5194/acp-10-5951-2010

Google Scholar

[2] U.S. Environmental Protection Agency, Mercury Study Report to Congress, Volume I: Executive Summary, Office of Air Quality Planning and Standards and Office of Research and Development, EPA-452/R-97-003, December (1997).

Google Scholar

[3] B. Zhao, Z. Zhang, J. Jin, W. -P. Pan, Simulation of mercury capture by sorbent injection using a simplified model. Journal of Hazardous Materials 170 (2009) 1179-1185.

DOI: 10.1016/j.jhazmat.2009.05.095

Google Scholar

[4] GAO., Preliminary observations on the effectiveness and costs of mercury control technologies at coal-fired power plants. Washington, DC, USA: (2009).

Google Scholar

[5] J. Ren, J. Zhou, Z. Luo, K. Cen, An experimental study on acticated sorbents for gas-phase mercury removal from flue gas. Proceedings of the CSEE (2004) 172-176.

Google Scholar

[6] H. Zeng, F. Jin, J. Guo, Removal of elemental mercury from coal combustion flue gas by chloride-impregnated activated carbon. Fuel 83 (2004) 143-146.

DOI: 10.1016/s0016-2361(03)00235-7

Google Scholar

[7] H. Gao, J. Zhou, Z. Luo, K. Cen, Experimental Study on Hg Vapor Adsorption of Modified Activated Carbons in Simulated Flue Gas. Proceedings of the CSEE 27 (2007) 26-30.

Google Scholar

[8] M. De, R. Azargohar, A. K. Dalai, S. R. Shewchuk, Mercury removal by bio-char based modified activated carbons. Fuel 103 (2013) 570-578.

DOI: 10.1016/j.fuel.2012.08.011

Google Scholar

[9] W. Du, L. Yin, Y. Zhuo, Q. Xu, L. Zhang, C. Chen, Catalytic Oxidation and Adsorption of Elemental Mercury over CuCl2-Impregnated Sorbents. Industrial & Engineering Chemistry Research 53 (2014) 582-591.

DOI: 10.1021/ie4016073

Google Scholar

[10] Information on http: /www. norit. com/products-and-services/products/darcosup-sup-hg-lh.

Google Scholar

[11] S. Sjostrom, M. Dillon, B. Donnelly, J. Bustard, G. Filippelli, R. Glesmann, T. Orscheln, S. Wahlert, R. Chang, A. O'Palko, Influence of SO3 on mercury removal with activated carbon: Full-scale results. Fuel Processing Technology 90 (2009).

DOI: 10.1016/j.fuproc.2009.08.019

Google Scholar

[12] X. Li, J. -Y. Lee, Modeling of Mercuric Chloride Removal by CuCl2-Impregnated Activated Carbon Sorbent in a Fabric Filter. Energy & Fuels 27 (2013) 7654-7663.

DOI: 10.1021/ef4017625

Google Scholar

[13] A. Saha, D. N. Abram, K. P. Kuhl, J. Paradis, J. L. Crawford, E. Sasmaz, R. Chang, T. F. Jaramillo, J. Wilcox, An X-ray Photoelectron Spectroscopy Study of Surface Changes on Brominated and Sulfur-Treated Activated Carbon Sorbents during Mercury Capture: Performance of Pellet versus Fiber Sorbents. Environmental science & technology 47 (2013).

DOI: 10.1021/es403280z

Google Scholar

[14] Y. Yao, V. Velpari, J. Economy, Design of sulfur treated activated carbon fibers for gas phase elemental mercury removal. Fuel 116 (2014) 560-565.

DOI: 10.1016/j.fuel.2013.08.063

Google Scholar

[15] M. M. Wiatros-Motyka, C. -g. Sun, L. A. Stevens, C. E. Snape, High capacity co-precipitated manganese oxides sorbents for oxidative mercury capture. Fuel 109 (2013) 559-562.

DOI: 10.1016/j.fuel.2013.03.019

Google Scholar

[16] J. Zhou, W. Hou, P. Qi, X. Gao, Z. Luo, K. Cen, CeO2–TiO2 Sorbents for the Removal of Elemental Mercury from Syngas. Environmental science & technology 47 (2013) 10056-10062.

DOI: 10.1021/es401681y

Google Scholar

[17] M. Levlin, E. Ikävalko, T. Laitinen, Adsorption of mercury on gold and silver surfaces. Fresenius' journal of analytical chemistry 365 (1999) 577-586.

DOI: 10.1007/s002160051526

Google Scholar

[18] A. A. Presto, E. J. Granite, Noble metal catalysts for mercury oxidation in utility flue gas. Platinum Metals Review 52 (2008) 144-154.

DOI: 10.1595/147106708x319256

Google Scholar

[19] E. J. Granite, C. R. Myers, W. P. King, D. C. Stanko, H. W. Pennline, Sorbents for mercury capture from fuel gas with application to gasification systems. Industrial & engineering chemistry research 45 (2006) 4844-4848.

DOI: 10.1021/ie060456a

Google Scholar

[20] A. Jain, S. -A. Seyed-Reihani, C. C. Fischer, D. J. Couling, G. Ceder, W. H. Green, Ab initio screening of metal sorbents for elemental mercury capture in syngas streams. Chemical Engineering Science 65 (2010) 3025-3033.

DOI: 10.1016/j.ces.2010.01.024

Google Scholar

[21] J. C. Hower, C. L. Senior, E. M. Suuberg, R. H. Hurt, J. L. Wilcox, E. S. Olson, Mercury capture by native fly ash carbons in coal-fired power plants. Progress in Energy and Combustion Science 36 (2010) 510-529.

DOI: 10.1016/j.pecs.2009.12.003

Google Scholar

[22] Y. Zhang, W. Duan, Z. Liu, Y. Cao, Effects of modified fly ash on mercury adsorption ability in an entrained-flow reactor. Fuel 128 (2014) 274-280.

DOI: 10.1016/j.fuel.2014.03.009

Google Scholar

[23] T. M. Bisson, Z. Xu, R. Gupta, Y. Maham, Y. Liu, H. Yang, I. Clark, M. Patel, Chemical–mechanical bromination of biomass ash for mercury removal from flue gases. Fuel 108 (2013) 54-59.

DOI: 10.1016/j.fuel.2012.02.035

Google Scholar

[24] W. Xu, H. Wang, T. Zhu, J. Kuang, P. Jing, Mercury removal from coal combustion flue gas by modified fly ash. Journal of Environmental Sciences 25 (2013) 393-398.

DOI: 10.1016/s1001-0742(12)60065-5

Google Scholar