Corrosion Behaviors of Li-B-H Films in Air

Article Preview

Abstract:

In the present study, Li-B-H films contained LiBH4 and Li2B12H12 were fabricated under different hydrogen pressures (20, 70 Pa) at ambient temperature by pulsed laser deposition (PLD). The corrosion behaviors of the films were studied over a time of 1-24 h in the air at ambient temperature. Fourier transform infrared spectrometry (FT-IR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to analyze the formed oxidation film. The results indicated that an oxidation film with obvious cracks and holes were formed, which was composed by Li2B4O7 and Li2CO3. The films were mainly reacted with H2O and CO2, so the oxidation of Li-B-H could be prevented by avoiding exposed to air.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

185-189

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. A. Bel'kov, G. V. Dolgoleva1, G. G. Kochemasov1 and E. I. Mitrofanov1: Quantum Electron Vol. 32 (2002), p.27.

Google Scholar

[2] S. Orimo, Y. Nakamori, N. Ohba, K. Miwa, M. Aoki, S. Towata, et al: Appl. Phys. Lett. Vol. 89 (2006), p.021920.

DOI: 10.1063/1.2221880

Google Scholar

[3] O. Friedrichs, F. Buchter, A. Borgschulte, A. Remhof, C. N. Zwicky, et al: Acta Mater. Vol. 56 (2008), p.949.

DOI: 10.1016/j.actamat.2007.10.055

Google Scholar

[4] C. Cetin, G. Metin: Renew Energ. Vol. 33 (2008), p.2388.

Google Scholar

[5] D. H. Lowndes, D. B. Geohegan, A. A. Puretzky, D. P. Norton, C. M. Rouleau: Science Vol. 273 (1996), p.898.

Google Scholar

[6] N. Jehanathan, Y. Liu, B. Walmsley, J. Dell, M. Saunders: J. Appl. Phys. Vol. 100 (2006), p.123516.

Google Scholar

[7] G. -W. Zhou, J. A. Eastman, R. C. Birtcher, P.M. Baldo, J. E. Pearson, L. J. Thompson, L. Wang and J. C. Yang: J. Appl. Phys. Vol. 101 (2007), p.033521.

Google Scholar

[8] D. Vanderbilt: Phys. Rev. B Vol. 41 (1990), p. R7892.

Google Scholar

[9] P. Hohenberg and W. Kohn: Phys. Rev. Vol. 136 (1964), p. B864.

Google Scholar

[10] J. P. Perdew, K. Burke, and M. Ernzerhof: Phys. Rev. Lett. Vol. 77 (1996), p.3865.

Google Scholar

[11] J-Ph. Soulié, G. Renaudin, R. Černý, K. Yvon: J. Alloys and Compds. Vol. 346 (2002), p.200.

Google Scholar

[12] Q.Y. Chen, M. Xu, H.P. Zhou, M.Y. Duan, W.J. Zhu, H.L. He: Phys. B Vol. 403 (2008), p.1666.

Google Scholar

[13] N. Ohba, K. Miwa, M. Aoki, T. Noritake, S. Towata, et al: Phys. Rev. B Vol. 74 (2006) p.075110.

Google Scholar

[14] S. Kohiki, T. Ohmura, K. Kusao: J. Electron. Spectrosc. Relat. Phenom. Vol. 31 (1983), p.85.

Google Scholar

[15] D. K. Aswal, K. P. Muthe, A. Singh, S. Sen, K. Shah, L. C. Gupta, S. K. Gupta, V. C. Sahni: Phys. C Vol. 363 (2001), p.208.

DOI: 10.1016/s0921-4534(01)00974-1

Google Scholar

[16] J. P. Contour, A. Salesse, M. Froment, M. Garreau, J. Thevenin, D. Warin, J. Microsc: Spectrosc. Electron Vol. 4 (1979), p.483.

Google Scholar

[17] J. A. Schreifels, P. C. Maybury, W. E. Swartz: J. Catal. Vol. 65 (1980), p.195.

Google Scholar

[18] S. Contarni, J.W. Rabalais, J. Electron: Spectrosc. Relat. Phenom. Vol. 35 (1985), p.191.

Google Scholar

[19] D. Costa, P. Marcus, W.P. Wang: J. Electrochem. Soc. Vol. 141 (1994), p.2669.

Google Scholar