Low Adhesive Superhydrophobicity and Self-Cleaning Property of Moth Wing

Article Preview

Abstract:

The microstructure, hydrophobicity, adhesion, and chemical composition of moth wing surfaces were investigated by a scanning electron microscope (SEM), a contact angle (CA) meter, and a Fourier transform infrared spectrometer (FT-IR). Using ground calcium carbonate (heavy CaCO3) as contaminating particle, the self-cleaning performance of wing surface was evaluated. The self-cleaning mechanism was discussed from the perspective of biological coupling. The wing surfaces, composed of naturally hydrophobic material (chitin, protein, fat, etc.), possess complicated hierarchical micro/nano structures. According to the large CA (138.9~158.4°) and small sliding angle (SA, 1~3°) of water droplet, moth wing surface is of low adhesion and high hydrophobicity. The removal rate of contaminating particle from wing surface is averagely 83.8%. There is a good positive correlation (r=0.81) between particle removal rate and roughness index of wing surface. The coupling effect of material element and structural element leads to the remarkable hydrophobicity and self-cleaning property of the wing surface. Moth wing can be potentially used as a template for biomimetic design of functional material with complex wettability. This work may offer interesting inspirations for preparation of smart interfacial material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

194-197

Citation:

Online since:

January 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Feng, S.H. Li, Y.S. Li, H.J. Li, L.J. Zhang, J. Zhai, Y.L. Song, B.Q. Liu, L. Jiang, D.B. Zhu, Super-hydrophobic surfaces: from natural to artificial, Adv. Mater. 14 (2002) 1857-1860.

DOI: 10.1002/adma.200290020

Google Scholar

[2] S.T. Wang, L. Jiang, Definition of superhydrophobic states, Adv. Mater. 19 (2007) 3423-3424.

DOI: 10.1002/adma.200700934

Google Scholar

[3] X.J. Feng, L. Jiang, Design and creation of superwetting/antiwetting surfaces, Adv. Mater. 18 (2006) 3063-3078.

DOI: 10.1002/adma.200501961

Google Scholar

[4] G. Sun, Y. Fang, Q. Cong, L.Q. Ren, Anisotropism of the non-smooth surface of butterfly wing, J. Bion. Eng. 6 (2009) 71-76.

DOI: 10.1016/s1672-6529(08)60094-3

Google Scholar

[5] Y. Fang, G. Sun, T.Q. Wang, Q. Cong, Hydrophobicity mechanism of non-smooth pattern on surface of butterfly wing, Chin. Sci. Bull. 52 (2007) 711-716.

DOI: 10.1007/s11434-007-0120-5

Google Scholar