Electrochemical Performance of SiO/C Composites as Anode Material for Li-Ion Batteries

Article Preview

Abstract:

Dopamine was used as the carbon precursor to prepare SiO/C composite. Dopamine achieved self-polymerization and covered on the surface of the SiO particles in Tris-buffer, and the SiO/C composites were gained after heat-treating in the tube furnace under Argon. X-ray diffraction ( XRD ) , scanning electron microscope ( SEM ) were used to determine the phases obtained and to observe the morphologies of the composite. The galvanostatic discharge/charge test was carried out to characterize the electrochemical properties of the composite. When the sample of the mixed SiO and dopamine at a weight ratio of 1 : 3, the composite showed the best cycle ability with the discharge capacity of 1362 mAh g1 in the first cycle, and the initial coulombic efficiency is 55.6%, after 50 cycles, the discharge capacity is 442 mAh g1. The improved stability of the composite is attributed to carbon-coating forming during heat-treatment process.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1092-1093)

Pages:

185-190

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Yamamura, S. Nakanishi, H. Iba, J. Power Sources . Vol. 232(2013),P. 264.

Google Scholar

[2] Y. N. Jo , Y. Kim, J. S. Kim,J. Power Sources. Vol. 195(2010),P. 6031.

Google Scholar

[3] Z.F. Li, H. Zhang, Q. Liu, Y. Liu, L. Stanciu, and J. Xie, ACS Appl. Mater. Interfaces. Vol. 6 (2014),P. 5996.

Google Scholar

[4] W. -S. Kim, Y. Hwa, J. -H. Shin, M. Yang, H. -J. Sohn and S. -H. Hong, Nanoscale. Vol. 6 (2014),P. 4297.

Google Scholar

[5] Z.P. Guo, J.Z. Wang, H.K. Liu, S.X. Dou, J. Power Sources. Vol. 146 (2005),P. 448.

Google Scholar

[6] H. Sepehri-Amin, T. Ohkubo, M. Kodzuka, H. Yamamur, ScriptaMaterialia. Vol. 69 (2013),P. 92.

Google Scholar

[7] P. Wu, H. Wang, Y. Tang, Y. Zhou and T. Lu, ACS Appl. Mater. Interfaces. Vol. 6 (2014),P. 3546.

Google Scholar

[8] Q. Si, K. Hanai, T. Ichikawa, A. Hirano, N. Imanishi, Y. Takeda, O. Yamamoto, J. Power Sources. Vol. 195 (2010),P. 1720.

DOI: 10.1016/j.jpowsour.2009.09.073

Google Scholar

[9] P. Gu, R. Cai, Y. Zhou, Z. Shao, Electrochim. Acta. Vol. 55 (2010) ,P. 3876.

Google Scholar

[10] Y. Eker, K. Kierzek, E. Raymundo-Pinero, J. Machnikowski, F. Béguin, Electrochim. Acta. Vol. 55 (2010),P. 729.

Google Scholar

[11] J. Wang, H. Zhao, J. He, C. Wang, J. Wang, J. Power Sources. Vol. 196(2011),P. 4811.

Google Scholar

[12] K. Meng, H. Guo, Z. Wang, X. Li, M. Su, PowderTechnology. Vol. 254 (2014),P. 403.

Google Scholar

[13] Y. Du, G. Zhu, K. Wang, Y. Wang, C. Wang and Y. Xia, Electrochem. Commun. Vol. 36 (2013),P. 108.

Google Scholar

[14] D.J. Lee, M. -H. Ryou, J. -N. Lee, B. G. Kim, Y. M. Lee, H. -W. Kim, B. -S. Kong, J. -K. Park, J.W. Choi, Electrochem. Communi. Vol. 34 (2013),P. 101.

Google Scholar