Applications of EPR Spectrometer in Environmental Samples

Article Preview

Abstract:

Electron paramagnetic resonance (EPR) spectrometer was widely applied to physics, chemistry and biomedicine. This research provided possible electron and valence information of environmental samples interaction through high sensitivity. The EPR signals of transition metals and organic radicals were distinguished well. Three kinds of carbon nanotubes (CNTs) (MW50, MW30 and MWG) had strong EPR signals. Addition of transition metals may be a suitable way to decrease environmentally persistent free radicals (EPFRs). The potential risks of EPFRs in BC and the reactive free electron in transition metals must be addressed to ensure their safe and scientific absorption application.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1092-1093)

Pages:

589-592

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Tateishi, K.; Negoro, M.; Nishida, S.; Kagawa, A.; Morita, Y.; Kitagawa, M. Room temperature hyperpolarization of nuclear spins in bulk. Proc. Natl. Acad. Sci. U. S. A. 2014, 111 (21), 7527-7530.

DOI: 10.1073/pnas.1315778111

Google Scholar

[2] Calvo, R. EPR measurements of weak exchange interactions coupling unpaired spins in model compounds. Appl. Magn. Reson. 2007, 31 (1-2), 271-299.

DOI: 10.1007/bf03166261

Google Scholar

[3] Lai, C. S.; Hopwood, L. E.; Hyde, J. S.; Lukiewicz, S. ESR studies of O2 uptake by Chinese hamster ovary cells during the cell cycle. Proc. Natl. Acad. Sci. U. S. A. 1982, 79 (4), 1166-70.

DOI: 10.1073/pnas.79.4.1166

Google Scholar

[4] Khachatryan, L.; McFerrin, C. A.; Hall, R. W.; Dellinger, B. Environmentally Persistent Free Radicals (EPFRs). 3. Free versus Bound Hydroxyl Radicals in EPFR Aqueous Solutions. Environ. Sci. Technol. 2014, 48 (16), 9220-9226.

DOI: 10.1021/es501158r

Google Scholar

[5] Fang, G.; Zhu, C.; Dionysiou, D. D.; Gao, J.; Zhou, D. Mechanism of hydroxyl radical generation from biochar suspensions: Implications to diethyl phthalate degradation. Bioresour. Technol. 2015, 176, 210-217.

DOI: 10.1016/j.biortech.2014.11.032

Google Scholar

[6] Vejerano, E.; Lomnicki, S.; Dellinger, B. Formation and Stabilization of Combustion-Generated Environmentally Persistent Free Radicals on an Fe(III)2O3/Silica Surface. Environ. Sci. Technol. 2011, 45 (2), 589-594.

DOI: 10.1021/es102841s

Google Scholar

[7] Liao, S.; Pan, B.; Li, H.; Zhang, D.; Xing, B. Detecting Free Radicals in Biochars and Determining Their Ability to Inhibit the Germination and Growth of Corn, Wheat and Rice Seedlings. Environ. Sci. Technol. 2014, 48 (15), 8581-8587.

DOI: 10.1021/es404250a

Google Scholar

[8] Lehmann, J. A handful of carbon. Nature. 2007, 447 (7141), 143-144.

DOI: 10.1038/447143a

Google Scholar

[9] Atkinson, C. J.; Fitzgerald, J. D.; Hipps, N. A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil. 2010, 337 (1-2), 1-18.

DOI: 10.1007/s11104-010-0464-5

Google Scholar

[10] Ahmad, M.; Rajapaksha, A. U.; Lim, J. E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S. S.; Ok, Y. S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere. 2014, 99, 19-33.

DOI: 10.1016/j.chemosphere.2013.10.071

Google Scholar

[11] Lam, C. W.; James, J. T.; McCluskey, R.; Arepalli, S.; Hunter, R. L. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit. Rev. Toxicol. 2006, 36 (3), 189-217.

DOI: 10.1080/10408440600570233

Google Scholar

[12] Christoforidis, K. C.; Un, S.; Deligiannakis, Y. High-field 285 GHz electron paramagnetic resonance study of indigenous radicals of humic acids. J. Phys. Chem. A. 2007, 111 (46), 11860-11866.

DOI: 10.1021/jp0717692

Google Scholar

[13] Wang, L.; Liang, N.; Li, H.; Yang, Y.; Zhang, D.; Liao, S.; Pan, B. Quantifying dynamic fluorescence quenching of phenanthrene and ofloxacin by dissolved humic acids. Environ. Pollut. 2015, 196, 379-385.

DOI: 10.1016/j.envpol.2014.10.029

Google Scholar

[14] Greedon, J. E. Encyclopedia of Inorganic Chemistry John Wiley & Sons (1994).

Google Scholar

[15] Polewski, K.; Sławińska, D.; Sławiński, J.; Pawlak, A. The effect of UV and visible light radiation on natural humic acid: EPR spectral and kinetic studies. Geoderma. 2005, 126 (3), 291-299.

DOI: 10.1016/j.geoderma.2004.10.001

Google Scholar

[16] Barabas, M. The nature of the paramagnetic centres at g = 2. 0057 and g = 2. 0031 in marine carbonates. Nucl. Tracks Radiat. Meas. 1992, 20 (3), 453-464.

Google Scholar

[17] Lomnicki, S.; Truong, H.; Vejerano, E.; Dellinger, B. Copper oxide-based model of persistent free radical formation on combustion-derived particulate matter. Environ. Sci. Technol. 2008, 42 (13), 4982-4988.

DOI: 10.1021/es071708h

Google Scholar

[18] dela Cruz, A. L. N.; Gehling, W.; Lomnicki, S.; Cook, R.; Dellinger, B. Detection of environmentally persistent free radicals at a superfund wood treating site. Environ. Sci. Technol. 2011, 45 (15), 6356-6365.

DOI: 10.1021/es2012947

Google Scholar

[19] Dellinger, B.; Lomnicki, S.; Khachatryan, L.; Maskos, Z.; Hall, R. W.; Adounkpe, J.; McFerrin, C.; Truong, H. Formation and stabilization of persistent free radicals. Proc. Combust. Instit. 2007, 31 (1), 521-528.

DOI: 10.1016/j.proci.2006.07.172

Google Scholar

[20] Li, H.; Pan, B.; Liao, S.; Zhang, D.; Xing, B. Formation of environmentally persistent free radicals as the mechanism for reduced catechol degradation on hematite-silica surface under UV irradiation. Environ. Pollut. 2014, 188, 153-158.

DOI: 10.1016/j.envpol.2014.02.012

Google Scholar