[1]
Tateishi, K.; Negoro, M.; Nishida, S.; Kagawa, A.; Morita, Y.; Kitagawa, M. Room temperature hyperpolarization of nuclear spins in bulk. Proc. Natl. Acad. Sci. U. S. A. 2014, 111 (21), 7527-7530.
DOI: 10.1073/pnas.1315778111
Google Scholar
[2]
Calvo, R. EPR measurements of weak exchange interactions coupling unpaired spins in model compounds. Appl. Magn. Reson. 2007, 31 (1-2), 271-299.
DOI: 10.1007/bf03166261
Google Scholar
[3]
Lai, C. S.; Hopwood, L. E.; Hyde, J. S.; Lukiewicz, S. ESR studies of O2 uptake by Chinese hamster ovary cells during the cell cycle. Proc. Natl. Acad. Sci. U. S. A. 1982, 79 (4), 1166-70.
DOI: 10.1073/pnas.79.4.1166
Google Scholar
[4]
Khachatryan, L.; McFerrin, C. A.; Hall, R. W.; Dellinger, B. Environmentally Persistent Free Radicals (EPFRs). 3. Free versus Bound Hydroxyl Radicals in EPFR Aqueous Solutions. Environ. Sci. Technol. 2014, 48 (16), 9220-9226.
DOI: 10.1021/es501158r
Google Scholar
[5]
Fang, G.; Zhu, C.; Dionysiou, D. D.; Gao, J.; Zhou, D. Mechanism of hydroxyl radical generation from biochar suspensions: Implications to diethyl phthalate degradation. Bioresour. Technol. 2015, 176, 210-217.
DOI: 10.1016/j.biortech.2014.11.032
Google Scholar
[6]
Vejerano, E.; Lomnicki, S.; Dellinger, B. Formation and Stabilization of Combustion-Generated Environmentally Persistent Free Radicals on an Fe(III)2O3/Silica Surface. Environ. Sci. Technol. 2011, 45 (2), 589-594.
DOI: 10.1021/es102841s
Google Scholar
[7]
Liao, S.; Pan, B.; Li, H.; Zhang, D.; Xing, B. Detecting Free Radicals in Biochars and Determining Their Ability to Inhibit the Germination and Growth of Corn, Wheat and Rice Seedlings. Environ. Sci. Technol. 2014, 48 (15), 8581-8587.
DOI: 10.1021/es404250a
Google Scholar
[8]
Lehmann, J. A handful of carbon. Nature. 2007, 447 (7141), 143-144.
DOI: 10.1038/447143a
Google Scholar
[9]
Atkinson, C. J.; Fitzgerald, J. D.; Hipps, N. A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil. 2010, 337 (1-2), 1-18.
DOI: 10.1007/s11104-010-0464-5
Google Scholar
[10]
Ahmad, M.; Rajapaksha, A. U.; Lim, J. E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S. S.; Ok, Y. S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere. 2014, 99, 19-33.
DOI: 10.1016/j.chemosphere.2013.10.071
Google Scholar
[11]
Lam, C. W.; James, J. T.; McCluskey, R.; Arepalli, S.; Hunter, R. L. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit. Rev. Toxicol. 2006, 36 (3), 189-217.
DOI: 10.1080/10408440600570233
Google Scholar
[12]
Christoforidis, K. C.; Un, S.; Deligiannakis, Y. High-field 285 GHz electron paramagnetic resonance study of indigenous radicals of humic acids. J. Phys. Chem. A. 2007, 111 (46), 11860-11866.
DOI: 10.1021/jp0717692
Google Scholar
[13]
Wang, L.; Liang, N.; Li, H.; Yang, Y.; Zhang, D.; Liao, S.; Pan, B. Quantifying dynamic fluorescence quenching of phenanthrene and ofloxacin by dissolved humic acids. Environ. Pollut. 2015, 196, 379-385.
DOI: 10.1016/j.envpol.2014.10.029
Google Scholar
[14]
Greedon, J. E. Encyclopedia of Inorganic Chemistry John Wiley & Sons (1994).
Google Scholar
[15]
Polewski, K.; Sławińska, D.; Sławiński, J.; Pawlak, A. The effect of UV and visible light radiation on natural humic acid: EPR spectral and kinetic studies. Geoderma. 2005, 126 (3), 291-299.
DOI: 10.1016/j.geoderma.2004.10.001
Google Scholar
[16]
Barabas, M. The nature of the paramagnetic centres at g = 2. 0057 and g = 2. 0031 in marine carbonates. Nucl. Tracks Radiat. Meas. 1992, 20 (3), 453-464.
Google Scholar
[17]
Lomnicki, S.; Truong, H.; Vejerano, E.; Dellinger, B. Copper oxide-based model of persistent free radical formation on combustion-derived particulate matter. Environ. Sci. Technol. 2008, 42 (13), 4982-4988.
DOI: 10.1021/es071708h
Google Scholar
[18]
dela Cruz, A. L. N.; Gehling, W.; Lomnicki, S.; Cook, R.; Dellinger, B. Detection of environmentally persistent free radicals at a superfund wood treating site. Environ. Sci. Technol. 2011, 45 (15), 6356-6365.
DOI: 10.1021/es2012947
Google Scholar
[19]
Dellinger, B.; Lomnicki, S.; Khachatryan, L.; Maskos, Z.; Hall, R. W.; Adounkpe, J.; McFerrin, C.; Truong, H. Formation and stabilization of persistent free radicals. Proc. Combust. Instit. 2007, 31 (1), 521-528.
DOI: 10.1016/j.proci.2006.07.172
Google Scholar
[20]
Li, H.; Pan, B.; Liao, S.; Zhang, D.; Xing, B. Formation of environmentally persistent free radicals as the mechanism for reduced catechol degradation on hematite-silica surface under UV irradiation. Environ. Pollut. 2014, 188, 153-158.
DOI: 10.1016/j.envpol.2014.02.012
Google Scholar