Treatment of Phenol Wastewater by Catalytic Wet Peroxide Oxidation over Fe2O3/γ-Al2O3

Article Preview

Abstract:

Fe2O3/γ-Al2O3 catalysts were prepared by the method of wet impregnation and were characterized by X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), N2 adsorption and Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES), respectively. The activity of Fe2O3/γ-Al2O3 for catalytic wet peroxide oxidation (CWPO) of phenol was tested. The effects of the initial pH of the phenolic aqueous solutions and the iron content of Fe2O3/γ-Al2O3 on phenol degradation have been studied. The results indicated that almost total removal of phenol and considerably high reduction of COD for the initial phenol concentration of 100-1000 mg/L were achieved under mild conditions. The leached iron from the catalyst was negligible.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1092-1093)

Pages:

962-965

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Santos, P. Yustos, A. Quintanilla, F. Garcia-Ochoa: Chem. Eng. Sci. 60 (2005) 4866-4878.

Google Scholar

[2] P. Bautista, A.F. Mohedano, J.A. Casas, J.A. Zazo, J.J. Rodriguez: J. Chem. Technol. Biotechnol. 83 (2008) 1323-1338.

Google Scholar

[3] R. Carta, F. Desogus: J. Environ. Chem. Eng. 1 (2013) 1292-1300.

Google Scholar

[4] M.A. Barron, Toxicological review of phenol (CAS no. 180-95-2), in: Support of Summary Information on the Integrated Risk Information System (IRIS), U.S. Environmental Protection Agency, Washington, DC, (2002).

Google Scholar

[5] A. Santos, P. Yustos, S. Rodriguez, F. Garcia-Ochoa: Appl. Catal. B: Environ. 65 (2006) 269-281.

Google Scholar

[6] F. Adam, J. Andas, I.A. Rahman: Chem. Eng. J. 165 (2010) 658-667.

Google Scholar

[7] M. Bajaj, C. Gallert, J. Winter: Bioresour . Technol. 99 (2008) 8376-8381.

Google Scholar

[8] M. Pera-Titus, V. Garcı́a-Molina, M.A. Baños, J. Giménez, S. Esplugas: Appl. Catal. B: Environ. 47 (2004) 219-256.

DOI: 10.1016/j.apcatb.2003.09.010

Google Scholar

[9] S.A. Messele, F. Stüber, C. Bengoa, A. Fortuny, A. Fabregat, J. Font: Procedia Engineering. 42 (2012) 1373-1377.

DOI: 10.1016/j.proeng.2012.07.529

Google Scholar

[10] G. Satishkumar, M.V. Landau, T. Buzaglo, L. Frimet, M. Ferentz, R. Vidruk, F. Wagner, Y. Gal, M. Herskowitz: Appl. Catal. B: Environ. 138-139 (2013) 276-284.

DOI: 10.1016/j.apcatb.2013.02.040

Google Scholar

[11] C.W. Jones, Applications of hydrogen peroxide and derivates, Royal Society of Chemistry: London, (1999).

Google Scholar

[12] N. Azbar, T. Yonar, K. Kestioglu: Chemosphere. 55 (2004) 35-43.

Google Scholar

[13] J.J. Pignatello, E. Oliveros, A. MacKay: Crit. Rev. Env. Sci. Technol. 36 (2006) 1-84.

Google Scholar

[14] R. Gonzalez-Olmos, F. Holzer, F.D. Kopinke, A. Georgi: Appl. Catal. A: Gen. 398 (2011) 44-53.

Google Scholar

[15] H. Bel Hadjltaief, P. Da Costa, P. Beaunier, M.E. Gálvez, M. Ben Zina: Appl. Clay. Sci. 91-92 (2014) 46-54.

DOI: 10.1016/j.clay.2014.01.020

Google Scholar

[16] J.A. Zazo, J.A. Casas, A.F. Mohedano, J.J. Rodríguez: Appl. Catal. B: Environ. 65 (2006) 261-268.

Google Scholar