Isothermal Crystallization Behavior of Cu42Zr42Al8Ag8 BMG Investigated with Electrical Resistance Measurement

Article Preview

Abstract:

The isothermal crystallization behavior of the Cu42Zr42Al8Ag8 bulk metallic glasse (BMG) was studied by the electrical resistance method. The increasing local activation energy means that the crystallization of the Cu42Zr42Al8Ag8 BMG becomes more and more difficult during the isothermal process. In the stage that the crystallized volume fraction falls into the range of 25–85%, the crystallization of the Cu42Zr42Al8Ag8 BMG is diffusion-controlled growth with a decreasing nucleation rate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

155-159

Citation:

Online since:

March 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.L. Qin, W. Zhang, Q.S. Zhang, K. Asami and A. Inoue: J. Mater. Res. Vol. 23, (2008), p. (2091).

Google Scholar

[2] Q.S. Zhang, W. Zhang and A. Inoue: Scripta Mater. Vol. 55, (2006), p.711.

Google Scholar

[3] C.L. Qin, W. Zhang, Q.S. Zhang, K. Asamib and A. Inoue: J. Alloy. Compd. Vol. 483, (2009), p.317.

Google Scholar

[4] Q.S. Zhang, W. Zhang, G.Q. Xie and A. Inoue: Mater. Trans. Vol. 48, (2007), p.1626.

Google Scholar

[5] Q.S. Zhang, W. Zhang and A. Inoue: Mater. Trans. Vol. 48, (2007), p.629.

Google Scholar

[6] W. Zhang, Q.S. Zhang, C. Qin and A. Inoue: Mater. Sci. Eng. B Vol. 148, (2008), p.92.

Google Scholar

[7] H.W. Yang, J. Gong, R.D. Li and J.Q. Wang: J. Non-Cryst. Solids Vol. 355, (2009), p.2205.

Google Scholar

[9] K.L. Sahoo, A.K. Panda, S. Das and V. Rao: Mater. Lett. Vol. 58, (2004), p.316.

Google Scholar

[10] J. Guo, F.Q. Zu, Z.H. Chen, S.B. Zheng and Y. Yuan: Solid State Commun. Vol. 135, (2005), p.103.

Google Scholar

[11] Y.Z. Lu, Y.J. Huang, X.S. Wei and J. Shen: Intermetallics Vol: 30, (2012), p.144.

Google Scholar

[12] O. Haruyama, H. Kimura, N. Nishiyama and A. Inoue: Mater. Sci. Eng. A Vol. 304–306, (2001), p.740.

Google Scholar

[13] A. Mitra, V. Rao, S. Pramanick and O.N. Mohanty: J. Mater. Sci. Vol. 27, (1992), p.5863.

Google Scholar

[14] D. Xu, G. Duan and W.L. Johnson: Phys. Rev. Lett. Vol. 92, (2004), p.245504.

Google Scholar

[15] J.F. Li, Z.H. Huang and Y.H. Zhou: Intermetallics Vol. 15, (2007), p.1013.

Google Scholar

[16] Z.Z. Yuan, X.D. Chen, B.X. Wang and Y.J. Wang: J. Alloy. Compd. Vol. 407, (2006), p.163.

Google Scholar

[17] L.C. Zhang, J. Xu and J. Eckert: J. Appl. Phys. Vol. 100, (2006), p.033514.

Google Scholar

[18] S.W. Wei, B.Z. Ding, T.Q. Li and Z.Q. Hu: Mater. Lett. Vol. 37, (1998), p.263.

Google Scholar

[19] C.W. Price: Acta Metal. Mater. Vol. 38, (1990), p.727.

Google Scholar

[20] Y.L. Gao, J. Shen, J.F. Sun, G. Wang, D.W. Xing, H.Z. Xian and B.D. Zhou: Mater. Lett. Vol. 57, (2003), p.1894.

Google Scholar