Atomistic Simulation on Buckling Behavior of Monolayer Graphene

Article Preview

Abstract:

The buckling behavior of monolayer graphene sheets with simple-supported, clamped-free and clamped-clamped boundary conditions is investigated by the atomic-scale finite method (AFEM). The initial static equilibrium state of monolayer graphene sheet is obtained in the simulation as a waved configuration which is close to the real graphene observed in experiments. With the increase of compressive displacement, the force displays three stages: linear increasing, nonlinear increasing and decreasing slowly after a sudden drop. Different from the prediction by classical theory, the critical buckling loads of graphene sheets with different boundary conditions are similar, which is attributed to the initial waved configuration of the monolayer graphene sheets.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-38

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Meng, R. Li, Q. Li, W. Lu, T. -W. Chou, Synthesis and failure behavior of super-aligned carbon nanotube film wrapped graphene fibers, Carbon, 72 (2014) 250-256.

DOI: 10.1016/j.carbon.2014.01.073

Google Scholar

[2] A. Sakhaee-Pour, Elastic buckling of single-layered graphene sheet, Comp Mater Sci, 45 (2009) 266-270.

DOI: 10.1016/j.commatsci.2008.09.024

Google Scholar

[3] J.C. Meyer, A.K. Geim, M. Katsnelson, K. Novoselov, T. Booth, S. Roth, The structure of suspended graphene sheets, Nature, 446 (2007) 60-63.

DOI: 10.1038/nature05545

Google Scholar

[4] Y. Zhou, Y. Chen, B. Liu, S. Wang, Z. Yang, M. Hu, Mechanics of nanoscale wrinkling of graphene on a non-developable surface, Carbon, (2015).

DOI: 10.1016/j.carbon.2014.11.055

Google Scholar

[5] B. Liu, Y. Huang, H. Jiang, S. Qu, K. Hwang, The atomic-scale finite element method, Comput Method Appl M, 193 (2004) 1849-1864.

DOI: 10.1016/j.cma.2003.12.037

Google Scholar

[6] B. Liu, H. Jiang, Y. Huang, S. Qu, M. -F. Yu, K. Hwang, Atomic-scale finite element method in multiscale computation with applications to carbon nanotubes, Phys Rev B, 72 (2005) 035435.

DOI: 10.1103/physrevb.72.035435

Google Scholar

[7] Y. Chen, B. Liu, K-C. Hwang and Y. Huang. A Theoretical Evaluation of Load Transfer in Multi-wall Carbon Nanotubes. Carbon, 2011, 49(1): 193-197.

DOI: 10.1016/j.carbon.2010.09.003

Google Scholar

[8] Y. Chen, B. Liu, X. He, Y. Huang, K. Hwang, Failure analysis and the optimal toughness design of carbon nanotube-reinforced composites, Compos Sci Technol, 70 (2010) 1360-1367.

DOI: 10.1016/j.compscitech.2010.04.015

Google Scholar

[9] Y. Chen, B. Liu, J. Wu, Y. Huang, H. Jiang, K. Hwang, Mechanics of hydrogen storage in carbon nanotubes, J Mech Phys Solids, 56 (2008) 3224-3241.

DOI: 10.1016/j.jmps.2008.07.007

Google Scholar

[10] D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, Journal of Physics: Condensed Matter, 14 (2002) 783.

DOI: 10.1088/0953-8984/14/4/312

Google Scholar

[11] S. Rouhi, R. Ansari, Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets, Physica E: Low-dimensional Systems and Nanostructures, 44 (2012) 764-772.

DOI: 10.1016/j.physe.2011.11.020

Google Scholar

[12] S.P. Timoshenko, J.M. Gere, Theory of elastic stability, Courier Dover Publications, (2009).

Google Scholar