Synthesis and Characterization of High Density and Low Temperature Sintered Proton Conductor BaCe0.5Zr0.35In0.1Zn0.05O3-δ

Article Preview

Abstract:

Rare-earth-doped BaCeO3 and BaZrO3 electrolytes with perovskite structure have been studied extensively in developing proton conducting intermediate temperature SOFC. Acceptor doped alkaline earth cerates and zirconates have been thoroughly studied because of the great interest in their possible applications as solid proton conductors. The perovskite type proton conductor BaCe0.5Zr0.35In0.1Zn0.05O3-δwas prepared in the traditional solid state reaction method. The density of the sample obtained about 96% of the theoretical density after sintering at 1350 °C and X-ray diffraction study confirms the pure phase. Rietveld refinement of the neutron and X-ray powder diffraction data shows that this material crystallizes in the orthorhombic symmetry in the space group Pm3m. Particle size measurement shows that the average particle size is about 2.4 μm. The average thermal expansion at 894 °C was 9.49 x 10-6/°C. Thermogravimetric analysis (TGA) traces obtained for the sample on heating in wet air shows that the maximum proton uptake occurs from 595 °C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

104-109

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Iwahara, Solid State Ionics Vol. 77 (1995), p.289.

Google Scholar

[2] T. Norby, Solid State Ionics Vol. 125 (1999), p.1.

Google Scholar

[3] Ph. Colomban (Ed. ), Proton Conductors: Solids, Membranes and Gels-Materials and Devices, (Cambridge University Press, Cambridge 1992).

DOI: 10.1002/adma.19930050923

Google Scholar

[4] H. Iwahara, H. Uchida, S. Tanaka, Solid State Ionics Vol. 9-10 (1983), p.1021.

Google Scholar

[5] I. Ahmed, M. Karlsson, S-G. Eriksson, E. Ahlberg, C.S. Knee, K. Larsson, A.K. Azad, A. Matic, L. Börjesson, J. Am. Ceram. Soc. Vol. 91 (2008), p.3039.

Google Scholar

[6] A.K. Azad, C. Savaniu, S. Tao, S. Duval, P. Holtappels, R.M. Ibberson, J.T. S. Irvine, J. Mater. Chem. Vol. 18 (2008), p.3414.

DOI: 10.1039/b806190d

Google Scholar

[7] F.L. Chen, O.T. Sorensen, G.Y. Meng, D.K. Peng, J. Mater. Chem. Vol. 7 (1997), p.481.

Google Scholar

[8] S.V. Bhide, A.V. Virkar, J. Electrochem. Soc. Vol. 146 (1999), p. (2038).

Google Scholar

[9] N. Taniguchi, K. Hatoh, J. Niikura, T. Gamou, H. Iwahara, Solid State Ionics Vol. 53 (1992), p.998.

DOI: 10.1016/0167-2738(92)90283-u

Google Scholar

[10] N. Taniguchi, E. Yasumoto, Y. Nakagiri, T. Gamou, J. Electrochem. Soc. Vol. 145(5) (1998), p.1744.

Google Scholar

[11] H.G. Bohn, T. Schober, J. Am. Ceram. Soc. Vol. 83 (2000), p.768.

Google Scholar

[12] M. Laidoudi, I. Abu Talib, R. Omar, J. Phys. D: Appl. Phys. Vol. 35 (2002), p.397.

Google Scholar

[13] C.D. Savaniu, J. Canalez-Vazquez, J.T.S. Irvine, J. Mater. Chem. Vol. 15 (2005), p.598.

Google Scholar

[14] A.K. Azad, J.T.S. Irvine, Solid State Ionics Vol. 178 (2007), p.635.

Google Scholar

[15] A.K. Azad, J.T.S. Irvine, Solid State Ionics Vol. 179 (2008), p.678.

Google Scholar

[16] S. Tao, J.T.S. Irvine, Adv. Mater. Vol. 18 (2006), p.1581.

Google Scholar

[17] P.E. Werner, L. Eriksson, M. Wastdahl, J. Appl. Crystallogr. Vol. 18 (1985), p.367.

Google Scholar

[18] J. Lougier, B. Bochu, Checkcell: Graphical Powder Diffraction Indexing Cell and Space Group Assignment Software, http: /www. inpg. fr/LMGP.

Google Scholar

[19] J. Rodrigues-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction, Physics B Vol. 192 (1993), p.55.

Google Scholar

[20] A.M. Glazer, Acta Crystallogr. B Vol. 28 (1972), p.3384.

Google Scholar