Preparation and Properties of Yttrium Doped Barium Cerate (BaCe1-xYxO3-δ)

Article Preview

Abstract:

Yttrium doped barium cerate is considered a promising electrolyte material for solid oxide fuel cell applications due to its excellent proton conductivity. The proton conductivity characteristics of the ceramic material can be influenced by the different synthesis processing parameters. This study aimed to obtain yttrium doped barium cerate BaCe1-xYxO3-δ (x = 0.15, 0.20) using a sol-gel modified Pechini method. The phase formation and surface morphology of the yttrium doped barium cerate were investigated using x-ray diffraction and scanning electron microscopy. The thermal decomposition of the calcined ceramic material was examined using thermogravimetric analysis. Diffraction analysis confirmed the formation of perovskite crystalline structure with the presence of secondary phase yttrium doped ceria. Larger grain size with homogeneous distribution and coalescence was observed in the sintered BaCe0.80Y0.20O3-δ.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

69-74

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Zuo, M. Liu, M. Liu, in: Sol-Gel Processing for Conventional and Alternative Energy, edited by M. Aparicio, A. Jitianu and L. Klein (Springer Science, New York 2012) p.7–36.

DOI: 10.1007/978-1-4614-1957-0

Google Scholar

[2] S. Badwal and K. Foger: Ceram. Int. 22.

Google Scholar

[3] (1996), p.257–265.

Google Scholar

[3] A. Subramaniyan, J. Tong, R. O'Hayre and N. Sammes: J. Am. Ceram. Soc. 94.

Google Scholar

[6] (2011), p.1800–1804.

Google Scholar

[4] A. D' Epifanio, E. Fabbri, E. Di Bartolomeo, S. Licoccia and E. Traversa: ECS Trans. 7.

Google Scholar

[1] (2007), p.2337–2342.

Google Scholar

[5] T. Hibino, A. Hashimoro, M. Suzuki and M. Sano: J. Electrochem. Soc. 149.

Google Scholar

[11] (2002), p. A1503–A1508.

Google Scholar

[6] K. Katahira, Y. Kohchi, T. Shimura and H. Iwahara: Solid State Ionics 138 [1-2] (2000), p.91–98.

DOI: 10.1016/s0167-2738(00)00777-3

Google Scholar

[7] J. Li, J. Luo, K. Chuang and A. Sanger: Electrochim. Acta 53.

Google Scholar

[10] (2008), p.3701–3707.

Google Scholar

[8] M. Galcera, M.C. Pujol, M. Aguilo and F. Diaz, J. Sol-Gel. Sci. Techn. 42.

Google Scholar

[1] (2007), p.79–88.

Google Scholar

[9] M. Kakihana and M. Yoshimura: Bull. Chem. Soc. Jpn. 72.

Google Scholar

[7] (1999), p.1427–1443.

Google Scholar

[10] S. Barison, M. Fabrizio, S. Fasolin, F. Montagner and C. Mortalo: Mater. Res. Bull. 45.

Google Scholar

[9] (2010), p.1171–1176.

Google Scholar

[11] M. Amsif, D. Marrero-Lopez, A. Magraso, J. Pena-Martinez, J.C. Ruiz-Morales and P. Nunez: J. Eur. Ceram. Soc. 29 (2009), p.131–138.

Google Scholar

[12] U. Singh, J. Li, J. Bennett, A. Rappe, R. Seshadri and S. Scott, J. Catal. 249.

Google Scholar

[2] (2007), p.349 – 358.

Google Scholar

[13] S. Dubal, A. Jamale, S. Jadhav, S. Patil, C. Bhosale and L. Jadhav, J. Alloy Compd. 587 (2014), pp.664-669.

DOI: 10.1016/j.jallcom.2013.10.093

Google Scholar