Stress Reduction in Bone/Dental Implant Interface Using Elastomeric Stress Absorbers

Article Preview

Abstract:

This paper focused on optimal stress distribution in the mandibular bone surrounding a dental implant and devoted to the development of a modified Osteoplant implant type in order to minimize stress concentration in the bone/implant interface. This study investigated two elastomeric stress barriers incorporated into the dental implant using 3-D finite element analysis. Overall, this proposed implant provoked lower bone/implant interface stresses due to the effect of the elastomers as stress absorbers.Key Words: Dental implant, stress absorber, elastomer, finite element method

You might also be interested in these eBooks

Info:

Periodical:

Pages:

129-139

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Abu-Hammad, O. A., Harrison, A., Williams, D., 2000. The effect of a hidroxyapatite-reinforced polyethylene stress distributor in a dental implant on compressive stress levels in surrounding bone. International Journal of Oral & Maxillofacial Implants 15(4), 559-64.

Google Scholar

[2] Babbush, C. A., Kirsch, A., Mentag, P. J., Hill, B., 1987. Intramobile Cylinder (IMZ) two stage osteointegrated implant system with the intra mobile element (IME): Part 1. Its rationale and procedure for use. International Journal of Oral & Maxillofacial Implants 2, 203-216.

DOI: 10.1016/0278-2391(91)90474-z

Google Scholar

[3] Baggi, L., Cappelloni, I., Di Girolamo, M., Maceri, F., Giuseppe V., 2008. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: A threedimensional finite element analysis. J Prosthet Dent 100 (6), 422-31.

DOI: 10.1016/s0022-3913(08)60259-0

Google Scholar

[4] Benaissa, A., Merdji, A., Ould Chikh, B., Meddah, H. M., Bachir Bouiadjra, B, Aminallah, L., 2012. The effect of overloads intensity on stress distribution in dental implant by 3D finite element method. Journal of Modelling and Simulation of Systems 3(1), 42-50.

DOI: 10.1016/j.matdes.2011.12.006

Google Scholar

[5] Bozkaya, D., Muftu, S., Muftu, A., 2004. Evaluation of load transfer characteristics of five different implants in compact bone at different load levels by finite elements analysis. J Prosthet Dent 92, 523-30.

DOI: 10.1016/j.prosdent.2004.07.024

Google Scholar

[6] Choi, B. H., 2000. Periodontal ligament formation around titanium implants using cultured periodontal ligament cells: a pilot study. International Journal of Oral & Maxillofacial Implants 15(2), 193-96.

Google Scholar

[7] Dalkiz, M., Zor, M., Aykul, H., Toparli, M., Aksoy, S., 2002. The three-dimensional finite element analysis of fixed bridge restoration supported by the combination of teeth and osseointegrated implants. Implant Dentistry 11(3), 293-300.

DOI: 10.1097/00008505-200207000-00016

Google Scholar

[8] Djebbar, N., Serier, B., Bachir Bouiadjra, B., Benbarek, S., Drai, A., 2010. Analysis of the effect of load direction on the stress distribution in dental implant. Mater Des 31, 2097-101.

DOI: 10.1016/j.matdes.2009.10.042

Google Scholar

[9] Eraslan, O., Sevimay, M., Usumez, A., Eskitascioglu, G., 2005. Effects of cantilever design and material on stress distribution in fixed partial dentures: a finite element analysis. Journal of Oral Rehabilitation 32 (4), 273-78.

DOI: 10.1111/j.1365-2842.2004.01429.x

Google Scholar

[10] Falcon-Antenucci, R. M., Pellizzer, E. P., Carvalho, P. S. P., Goiato, M. C., Noritomi, P. Y., 2010. Influence of Cusp Inclination on Stress Distribution in Implant-Supported Prostheses. A Three- Dimensional Finite Element Analysis. Journal of Prosthodontics 19, 381-386.

DOI: 10.1111/j.1532-849x.2010.00582.x

Google Scholar

[11] Geng, J. P., Xu, D. W., Tan, K. B., Liu, G. R., 2004. Finite element analysis of an osseointegrated stepped screw dental implant. J Oral Implantol 30, 223-33.

DOI: 10.1563/0654.1

Google Scholar

[12] Geramy, A., Morgano, S. M., 2004. Finite element analysis of three designs of an implant supported molar crown. J Prosthet Dent 92(5), 434-40.

DOI: 10.1016/j.prosdent.2004.08.011

Google Scholar

[13] Giesen, E. B., Ding, M., Dalstra, M., van Eijden, T. M., 2001. Mechanical properties of cancellous bone in the human mandibular condyle are anisotropic. J Biomech 34(6), 799-803.

DOI: 10.1016/s0021-9290(01)00030-6

Google Scholar

[14] Heckmann, S. M., Winter W, Meyer, M., Weber, H.P., Wichman, M. G., 2001. Overdenture attachment selection and the loading of implant and denture bearing area. Part 2: A methodical study using five types of attachment. Clin Oral Impl Res 12, 640-47.

DOI: 10.1034/j.1600-0501.2001.120613.x

Google Scholar

[15] Himmlová, L., Dostálová, T., Kácovský, A., Konvicková, S., 2004. Influence of implant length and diameter on stress distribution: a finite element analysis. J Prosthet Dent 91(1), 20-5.

DOI: 10.1016/j.prosdent.2003.08.008

Google Scholar

[16] Hoshaw, S. J., Brunski, J.B., Cochran, G. V. B., 1994. Mechanical loading of Brånemark implants affects interfacial bone modeling and remodeling. International Journal of Oral & Maxillofacial Implants 9(3), 345-60.

Google Scholar

[17] Ishigaki, S., Nakano, T., Yamada, S., Nakamura, T., Takashima, F., 2003. Biomechanical stress in bone surrounding an implant under simulated chewing. Clinical Oral Implants Research 14, 97-102.

DOI: 10.1034/j.1600-0501.2003.140113.x

Google Scholar

[18] Jung, Y. C., Han, C. H., Lee, K. W., 1996. A 1-year radiographic evaluation of marginal bone around dental implants. International Journal of Oral & Maxillofacial Implants 11(6), 811-8.

Google Scholar

[19] Koca, O. L., Eskitascioglu, G., Usumez, A., 2005. Three dimensional finite element analysis of functional stresses in different bone locations produced by implants placed in the maxillary posterior region of the sinus floor. J Prosthet Dent 93, 38-44.

DOI: 10.1016/j.prosdent.2004.10.001

Google Scholar

[20] Li, T., Kong, L., Wang, Y., Hu, K., Song, L., Liu, B., Li, D., Shao, J., Ding, Y., 2009. Selection of optimal dental implant diameter and length in type IV bone: a three-dimensional finite element analysis. Int J Oral Maxillofac Surg 38, 1077-83.

DOI: 10.1016/j.ijom.2009.07.001

Google Scholar

[21] Lídia, C., Ramos, A., Simões, A., 2004. Finite element analysis of a dental implant system with an elastomeric stress barrier, summer bioengineering conference, June 25-29, Sonesta Beach Resort in Key Biscayne, Florida.

Google Scholar

[22] Lin, D., Li, Q., Li, W., Duckmanton, N., Swain, M., 2010. Mandibular bone remodeling induced by dental implant. J Biomech 43(2), 287-93.

DOI: 10.1016/j.jbiomech.2009.08.024

Google Scholar

[23] Misch, C. E., Bidez, M. W., 2007. A scientific rationale for dental implant design. In: Misch, C. E., editor. Contemporary implant dentistry, 3rd edition, St Louis, Mosby, pp.329-44.

DOI: 10.1016/b978-0-323-07845-0.00015-4

Google Scholar

[24] Natali, A. N., Pavan, P. G., 2003. Numerical approach to dental biomechanics. In: Natali, A. N. editor. Dental biomechanics, Taylor & Francis Group, London, pp.211-39.

DOI: 10.1201/9780203514849.ch11

Google Scholar

[25] Natali, A. N., Pavan, P. G., 2002. A comparative analysis based on different strength criteria for evaluation of risk factor for dental implants. Comput Methods Biomech Eng 5, 127-33.

DOI: 10.1080/10255840290032144

Google Scholar

[26] Papavasiliou, G., Kamposiora, P., Bayne, S. C., Felton, D. A., 1996. Three-dimensional finite element analysis of stress distribution around single tooth implants as a function of bony support, prosthesis type, and loading during function. Journ Prosthet Dent 76(6), 633-40.

DOI: 10.1016/s0022-3913(96)90442-4

Google Scholar

[27] Rangert, B., Krogh, P. H. J., Langer, B., Roekel, N. V., 1995. Bending overload and implant fracture: A retrospective clinical analysis. International Journal of Oral & Maxillofacial Implants 10, 326-34.

Google Scholar

[28] Schwartz-Arad, D., Yaniv, Y., Levin, L., Kaffe, I., 2004. A radiographic evaluation of cervical bone loss associated with immediate and delayed implants placed for fixed restorations in edentulous jaws. J Periodontol 75(5), 652-7.

DOI: 10.1902/jop.2004.75.5.652

Google Scholar

[29] Yokoyama, S., Wakabayashi, N., Shiota, M., Ohyama, T., 2005. Stress analysis in edentulous mandibular bone supporting implant-retained 1-piece or multiple superstructures. International Journal of Oral & Maxillofacial Implants 20(4), 578-83.

Google Scholar