Concept of the Tip Effect in Single Walled Carbon Nanotube

Article Preview

Abstract:

In this investigation, we reported that single walled carbon nanotube can act as a sharpest tip where the electric field strength is highly concentrated at the edge. Therefore, we study the effects of the physical and geometrical parameters of an applied electric field gradient to various electrode structures. Results showed that carbon nanotubes presented a strongest electric field value at the edge which makes them suited for applications as unidirectional electric field or serving as nanoelectrode with a diameter of about one nanometer to be used for conductivity nanotest and to determine the electrical properties of single molecules or clusters.Keywords: single walled carbon nanotube, nan-electrode, tip, electric field lines, surface charge density.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-40

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Ijima, T. Ichihasi, Nature 363, 603, (1993).

Google Scholar

[2] S. Ijima, Nature 354, 56, (1991).

Google Scholar

[3] Valentin N. Popov, Materials Science and Engineering R, 2004, 43, 61.

Google Scholar

[4] R. Saito, M. Fujita, M.S. Dresselhaus, G. Dresselhaus, Appl. Phys. Lett., 1992, 60, 2204.

Google Scholar

[5] J.W. Mintmire, B.I. Dunlap, C.T. White, Physical Review Letters, 1992, 68, 631.

Google Scholar

[6] H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley, Nature, 1996, 384, 147.

Google Scholar

[7] S. S. Wong, J. D. Harper, P. T. Lansbury, Jr., C. M. Lieber, J. Am. Chem. Soc., 1998, 120, 603.

Google Scholar

[8] P.G. Collins, A. Zettl, H. Bando, A. Thess, R. Smalley, Science, 1997, 278, 100.

Google Scholar

[9] R. Martel, T. Schmidt, H.R. Shea, T. Hertel, Ph. Avouris, Applied Physics Letter, 1998, 73, 2447.

Google Scholar

[10] G. Gruner, Anal Bioanal Chem, 2006, 384, 322.

Google Scholar

[11] Brett Lee allen, PadmakarD. Kichambare, Alexander Star, Advanced Materials, 2007, 19, 1439.

Google Scholar

[12] J.A. Misewich, R. Martel, Ph. Avouris, J.C. Tsang, S. Heinze, J. Tersoff, Science, 2003, 300, 783.

DOI: 10.1126/science.1081294

Google Scholar

[13] R. H. Baughman, A. A. Zakhidov, W. A. de Heer, Science 297, 787, (2002).

Google Scholar

[14] Chantal Gongran, Maylis Orio, David Rigal, Bruno Galland, Laurent Bouffier, Tioga Gulon, Serge cosnier, Electrochemistry communications, 2010, 12, 311.

DOI: 10.1016/j.elecom.2009.12.026

Google Scholar

[15] J. Wang, Electroanalysis, 2005, 17, 7.

Google Scholar

[16] D. Vairavapandian, P. Vichchulada, M.D. Lay, Anal. Chim Acta, 2008, 626, 119.

Google Scholar

[17] M.S. Dresselhaus, G Dresselhaus, P.C. Eklund, Science of fullerene and carbon nanotubes, Academic Press, San Diego, (1995).

Google Scholar

[18] K. El-Hami and K. Matsushige, IEICE Trans. Electron, vol. E87-c No. 12, 2116, (2004).

Google Scholar