Experimental and Numerical Study of Interfacial Fracture Parameters of a Brazed Joints

Article Preview

Abstract:

This paper deals with an identification methodology of the interfacial fracture parameters to predict the lifetime of a metallic brazed joint. The methodology is based on an experimental-numerical study whereby the optimal parameters are obtained. The experimental data, using the scanning electron microscope analysis, allowed approving that failure of the assembly based AuGe solder seems first to appear near the interfaces. These results were confirmed by micrographs analysis of the solder/insert and solder/substrate interfaces. Then, using shear test results and parametric identification coupled with a finite elements model (FEM) simulation, the damage constitutive law of the interfacial fracture based on a bilinear cohesive zone model are identified. The agreement between the numerical results and the experimental data shows the applicability of the cohesive zone model to fatigue crack growth analysis and life estimation of brazed joints.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-16

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Abdul-Baqi, P.J.G. Schreurs and M.G.D. Geers (2005). Fatigue damage modeling in solder interconnects using a cohesive zone approach. International Journal of Solids and Structures, 42: 927-942.

DOI: 10.1016/j.ijsolstr.2004.07.026

Google Scholar

[2] G. Alfano (2006). On the influence of the shape of the interface law on the application of cohesive-zone models. Journal of Composites Science and Technology, 66: 723-730.

DOI: 10.1016/j.compscitech.2004.12.024

Google Scholar

[3] G. Alfano and M. Crisfield (2001). Finite Element Interface Models for the delamination analysis of laminated composites : mechanical and computational issues. International Journal for Numerical Methods in Engineering, 50, 50: 1701-1736.

DOI: 10.1002/nme.93

Google Scholar

[4] A. Baazaoui, J. Alexis, O. Dalverny and M. Karama (2013).

Google Scholar

[5] A. Baazaoui, O. Dalverny, J. Alexis and M. Karama (2013). Study and mechanical characterization of high temperature power electronic packaging. 21ème Congrès Français de Mécanique, CFM2013, Bordeaux, France.

Google Scholar

[6] G. Barenblatt (1962). The mathematical theory of equilibrium cracks in brittle fracture. Advances in applied mechanics, 55-129.

DOI: 10.1016/s0065-2156(08)70121-2

Google Scholar

[7] D. Bhate, D. Chan, G. Subbarayan and L. Nguyen (2007).

Google Scholar

[8] P.P. Camanho and C.G. Dávila  (2002). Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials. NASA/TM, 1-37.

Google Scholar

[9] D. Dugdale (1996). Yielding of steel sheets containing slits. Mechanics and Physics of Solids, 100-104.

DOI: 10.1016/0022-5096(60)90013-2

Google Scholar

[10] T. Fourcade, O. Dalverny, J. Alexis, C. Seguineau and J. Desmarres (2014). Parametric identification of elastic-plastic constitutive laws using spherical indentation. Proceedings of International Symposium on Aircraft Materials ACMA2014. Marocco.

Google Scholar

[11] F. Hosking, J. Stephens and J. Rejent (1999). Intermediate Temperature Joining of Dissimilar Metals. Welding Journal.

Google Scholar

[12] V. Hutchinson and J. Tvergaard (2002). Two mechanisms of ductile fracture: void by void growth versus multiple void interaction. International Journal of Solids and Structures, 39: 3581-3597.

DOI: 10.1016/s0020-7683(02)00168-3

Google Scholar

[13] S. Li, M. Thouless, A. Waas, J. Schroeder and P. Zavettieri (2005). Use of mode-I cohesive-zone models to describe the fracture of an adhesively-bonded polymer-matrix composite. Composites Science and Technology, 65: 281-293.

DOI: 10.1016/j.compscitech.2004.07.009

Google Scholar

[14] S. Msolli (2011). Modélisation thermomécanique de l'assemblage d'un composant diamant pour l'électronique de puissance haute température. Toulouse: PhD thesis of INP University.

Google Scholar

[15] S. Msolli, A. Baazaoui, O. Dalverny, J. Alexis and M. Karama (2012).

Google Scholar

[16] E. Müge (2007). Thermomechanical fatigue failure of interfaces in lead-free solders. Netherlands: PhD thesis, Eindhoven University of Technology.

Google Scholar

[17] A. Needleman (1987). A continuum model for void nucleation by inclusion debonding. Journal of Applied Mechanics, 54: 525-531.

DOI: 10.1115/1.3173064

Google Scholar

[18] A. Needleman and X. Xu (1994). Numerical simulations of fast crack growth in brittle solids. Journal of the Mechanics and Physics of Solids, 42(9): 1397-1434.

DOI: 10.1016/0022-5096(94)90003-5

Google Scholar

[19] O. Nguyen, E.A. Repetto and M. Ortiz (2001). A cohesive model of fatigue crack growth. International Journal of Fracture, 110: 351-369.

Google Scholar

[20] G. Ortiz and M. Camacho (1996). Computational modelling of impact damage in brittle materials. International Journal of Solids and Structures, 33(20-22): 2899-2938.

DOI: 10.1016/0020-7683(95)00255-3

Google Scholar

[21] Q.D. Yang, D.J. Shim and S.M. Spearing (2004). A cohesive zone model for low cycle fatigue life prediction of solder joints. Microelectronic Engineering, 75: 85-95.

DOI: 10.1016/j.mee.2003.11.009

Google Scholar

[22] H.H. Ren, X.S. Wang and S. Jia (2013). Fracture analysis on die attach adhesives for stacked packages based on in-situ testing and cohesive zone model. Microelectronics Reliability, 1-8.

DOI: 10.1016/j.microrel.2013.04.001

Google Scholar

[23] I. Scheider (2009). Micromechanical based derivation of traction-separation laws for cohesive model simulations. Journal of Procedia Engineering, 1: 17-21.

DOI: 10.1016/j.proeng.2009.06.006

Google Scholar

[24] K. R. Siegmund (2003). An irreversible cohesive zone model for interface fatigue crack growth simulation. Engineering Fracture Mechanics, 70: 209-232.

DOI: 10.1016/s0013-7944(02)00034-6

Google Scholar

[25] V. Tvergaard (1990). Effect of fibre debonding in a whisker-reinforced metal. Materials Science and Engineerging, A125, 203-213.

DOI: 10.1016/0921-5093(90)90170-8

Google Scholar

[26] V. Tvergaard and J. Hutchinson (1992). The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. Journal of the Mechanics and Physics of Solids, 40, 1377-1397.

DOI: 10.1016/0022-5096(92)90020-3

Google Scholar

[27] Y. Yao and L. Keer (2013). Cohesive fracture mechanics based numerical analysis to BGA packaging. Microelectronics Reliability, 53: 629-637.

DOI: 10.1016/j.microrel.2012.12.007

Google Scholar

[28] Y. Yao, S. Vaynman, L. Keer and M. Fine (2008). Energy based micromechanics analysis on fatigue crack propagation behavior in Sn-Ag eutectic solder. Journal of Electronic Materials, 37(3): 339-346.

DOI: 10.1007/s11664-007-0356-5

Google Scholar

[29] P. Zavattieri and H. Espinosa (2001). Grain level analysis of crack initiation and propagation in brittle materials. Acta Materialia, 49(20): 4291-4311.

DOI: 10.1016/s1359-6454(01)00292-0

Google Scholar