Fatigue Behavior of Aerospace Al-Cu, Al-Li and Al-Mg-Si Sheet Alloys

Article Preview

Abstract:

In the present work, an experimental study was performed to characterize and analyze the tensile and constant amplitude fatigue mechanical behavior of several aluminum alloys, namely 2024 (Al-Cu), 2198 (Al-Li) and 6156 (Al-Mg-Si). Al-Li alloy was found to be superior of 2024 in the high cycle fatigue and fatigue endurance limit regimes, especially when considering specific mechanical properties. Alloy 6156 was found to have superior constant amplitude fatigue performance that the respective 6xxx series alloys; more than 15% higher endurance limit was noticed against 6061 and almost 30% higher than 6082. Alloy 6156 presented only a marginal increase in fatigue life for the HCF regime.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-8

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.J. Rioja and J. Liu: Metall Mater Trans A Vol. 43A (2012), p.3325.

Google Scholar

[2] A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus and W.S. Miller: Mater Sci Eng A Vol. A280 (2000), p.102.

Google Scholar

[3] P. Lequeu, P. Lassince and T. Warner: Adv. Mater. Proc. Vol. 165 (2007), p.41.

Google Scholar

[4] L. Lin, Z. Zheng and J. Li: Rare Metal. Mater. Eng. Vol. 41 (2012), p.1004.

Google Scholar

[5] H.F. Zhang, Z.Q. Zheng, S. Zhong, X.F. Luo and J. Zhong: Chin. J. of Nonferrous Met. Vol. 22 (2012), p.1025.

Google Scholar

[6] K. Jin, Y.L. Deng, L. Zhou, L. Wan and X.M. Zhang: J. of Aeron. Mater. Vol. 31 (2011), p.18.

Google Scholar

[7] H. Zhang, Z. Zheng, Y. Lin, X. Luo and J. Zhong: J. Mater. Sci. Vol. 47 (2012), p.4101.

Google Scholar

[8] L. She, Z. Zheng, S. Zhong, Q. Wu and H. Li: Rare Metal. Mater. Eng. Vol. 41 (2012), p.1201.

Google Scholar

[9] T.F. Morgeneyer, M.J. Starink and I. Sinclair: Mater. Sci. Forum Vol. 519-521 (2006), p.1023.

Google Scholar

[10] TF. Morgeneyer, M. J Starink, S.C. Wang and I. Sinclair: Acta Mater. Vol. 56 (2008), p.2872.

Google Scholar

[11] N.D. Alexopoulos, E. Migklis, A. Stylianos and D.P. Myriounis: Int. J. Fatigue Vol. 56 (2013), p.95.

Google Scholar

[12] C. Bitondo, U. Prisco, A. Squillace, G. Giorleo, P. Buonadonna, G. Dionoro and G. Campanile: Int J Mater Form Vol. 3 (2010), p.1079.

DOI: 10.1007/s12289-010-0958-y

Google Scholar

[13] A. Astarita, A. Squillace, A. Scala and A. Prisco: J Mater Eng Perf Vol. 21 (2012), p.1763.

Google Scholar

[14] J. Chen, Y. Madi, T.F. Morgeneyer and J. Besson: Comp Mater Sci Vol. 50 (2011), p.1365.

Google Scholar

[15] L.P. Borrego, L.M. Abreu, J.M. Costa and J.M. Ferreira, Eng. Fail. Analysis Vol. 11 (2004), p.715.

Google Scholar

[16] P. Mazal and P. Liskutin In proceedings of the 23rd International Conference on Metallurgy and Materials (METAL 2014) May 21st - 23rd.

Google Scholar

[17] D. Jisa, P. Liskutin, T. Kruml and J. Polak: Int. J Fatigue Vol. 32 (2010), p. (1913).

Google Scholar

[18] G. Mesmacque, A. Amrouche and X. Decoopman: Mater. Sci. Eng. A Vol. A497 (2008), p.51.

Google Scholar

[19] P.M.G.P. Moreira, V. Richter-Trummer and P.M.S.T. de Castro in: Multiscale Fatigue Crack Initiation and Propagation of Engineering Materials: Structural Integrity and Microstructural Worthiness - Fatigue Crack Growth Behaviour of Small and Large Bodies, edited by G. Sih, Vol. 152, Springer Science (2008).

DOI: 10.1007/978-1-4020-8520-8_5

Google Scholar