Preparation of Delaminated Nano-Kaolinite by Intercalation of Chemical Assistants

Abstract:

Article Preview

A process for preparing of the delaminated kaolinite was developed with intercalation of hydrazine, urea or potassium acetate followed by removing the chemical assistants. Delaminated kaolinite was characterized by XRD, solid-state NMR, thermal analyses, particle-size distribution analyses, etc. The particle size was reduced to ca. 440 nm in diameter and ca.15 nm in thickness in contrast to about 7 μm and 800 nm for untreated precursor respectively. The dehydroxylation temperature of kaolinite was shifted from 514°C to 490°C by the delamination. Additionally, a greater mass lost was also observed for the delaminated particles by dehydroxylation.

Info:

Periodical:

Advanced Materials Research (Volumes 11-12)

Main Theme:

Edited by:

Masayuki Nogami, Riguang Jin, Toshihiro Kasuga and Wantai Yang

Pages:

441-444

DOI:

10.4028/www.scientific.net/AMR.11-12.441

Citation:

M. N. Niu and C. X. Guo, "Preparation of Delaminated Nano-Kaolinite by Intercalation of Chemical Assistants", Advanced Materials Research, Vols. 11-12, pp. 441-444, 2006

Online since:

February 2006

Export:

Price:

$35.00

[1] G. Tari, T. Fonseca and J.M.F. Ferreira: British Ceram. Trans. Vol. 97 (1998), p.256.

[2] H.H. Murray: Appl. Clay Sci. Vol. 17 (2000), p.207.

[3] E. Galán, P. Aparicio, I. González and A. Miras: Clay Mineral. Vol. 33 (1998), p.65.

[4] F. Franco, L.A. Pérez-Maqueda and J.L. Pérez-Rodríguez: J. Colloid Interface Sci. Vol. 274 (2004), p.107.

[5] G. Suraj, C.S.P. Iyer, S. Rugmini and M. Lalithambika: Appl. Clay Sci. Vol. 12 (1997), p.111.

[6] G. Baudet, V. Perrotel, A. Seron and M. Stellatelli: Powder Tech. Vol. 105 (1999), p.125.

[7] P.J. Sánchez-Soto, M.C. Jiménez de Haro, L.A. Pérez-Maqueda, I. Varona and J.L. Pérez-Rodríguez: J. Am. Ceram. Soc. Vol. 83 (2000), p.1649.

[8] F. González-García, M.T. Ruiz-Abrio and M. González-Rodríguez: Clay Mineral. Vol. 26 (1991), p.549.

[9] Y. Deng, J.B. Dixon and G.N. White: J. Colloid Interface Sci. Vol. 257 (2003), p.208.

[10] R.L. Frost, J. Kristof, E. Horvath, W.N. Martens and J.T. Kloprogge: J. Colloid Interface Sci. Vol. 251 (2002), p.350.

[11] R.L. Frost, J. Kristof, L. Rintoul and J.T. Kloprogge: Spectrochimica Acta Part A. Vol. 56 (2000), p.1681.

[12] S. Nakagaki, F.L. Benedito and F. Wypych: J. Molecular Catalysis A: Chemical. Vol. 217 (2004), p.121.

[13] Y. Deng, G.N. White and J.B. Dixon: J. Colloid Interface Sci. Vol. 250 (2002), p.379.

[14] R.L. Frost, J. Kristof, E. Mako and J.T. Kloprogge: Langmuir. Vol. 16 (2000), p.7421.

[15] R.L. Frost, E. Mak´o, J. Krist´of, E. Horv´ath�and J.T. Kloprogge: J. Colloid Interface Sci. Vol. 239 (2001), p.458.

[16] R.L. Frost, J. Kristof, G.N. Paroz, T.H. Tran and J.T. Kloprogge: J. Colloid Interface Sci. Vol. 208�(1998), p.216.

[17] R.L. Frost, T.H. Tran, and J. Kristof: Vibrational Spectroscopy. Vol. 13 (1997), p.175.

[18] G. Suraj, C.S.P. Iyer, S. Rugmini and M. Lalithambika: Appl. Clay Sci. Vol. 12 (1997), p.111.

[19] P.J. Sánchez-Soto and A. Wiewióra: Appl. Clay Sci. Vol. 12 (1997), p.297.

[20] R.L. Frost, É. Makó, J. Krist óf, E. Horváth and J.T. Kloprogge: Langmuir Vol. 17 (2001), p.4731.

In order to see related information, you need to Login.