Filler Network Change and Nonlinear Viscoelasticity of Rubbers

Article Preview

Abstract:

Uncured, filled rubbers show remarkable nonlinear viscoelasticity as well as cured, filled rubbers. The nonlinearity may come from change in entanglement and filler network structures. Many people use dynamic modulus to characterize rubber materials. However, dynamic modulus cannot be defined at large strain. Hence we must study a viscoelastic function to be defined at large strain. In addition, we need other information to separate the effects of the change in entanglement and filler network structures on nonlinear viscoelasticity. In this work, we have measured simultaneously relaxation modulus G(γ,t) and electrical resistivity ρ(γ,t) for carbon black (CB)-filled, uncured styrene-butadiene copolymers (SBRs) at wide range of strains. Electrical resistivity at equilibrium, ρ(0,t), showed step-like change at the CB loading between 20 and 35 phr, indicating threshold for filler network formation should exist in the range of values in CB loading. Both G(γ,t) and ρ(γ,t) for the samples having CB loading to be higher than the threshold showed nonlinearity at the strain larger than shear strain γ=0.1, indicating rupture in filler network at large strain.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 11-12)

Pages:

729-732

Citation:

Online since:

February 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Barre`s, A. Mongruel, M. Cartault and J.L. Leblanc: J. Appl. Polym. Sci. Vol. 87 (2003), p.31.

Google Scholar

[2] G. Heinrich and M. Klueppel: Adv. Polym. Sci. Vol. 160 (2002), P. 1.

Google Scholar

[3] J. Froehlich, W. Niedermeier and H. -D. Luginsland: Composites Part A, Appl Sci. Manufacturing Vol. 36A (2005), p.449.

Google Scholar

[4] A.R. Payne: J. Appl. Polym. Sci. Vol. 6 (1962), p.57.

Google Scholar

[5] Y. Isono, T. Oyama and S. Kawahara: Adv. Tech. Mat. Mat. Proc. J. Vol. 5 (2003), P. 84.

Google Scholar

[6] Y. Isono and J.D. Ferry: Rubber Chem. Technol. Vol. 57 (19849, p.925.

Google Scholar

[7] Y. Isono and J.D. Ferry: J. Rheol. Vol. 29 (1985), p.273.

Google Scholar

[8] Y. Isono, K. Itoh, T. Komiyatani and T. Fujimoto: Macromolecules Vol. 24 (1991), p.4429.

Google Scholar

[9] Y. Isono, K. Shizuru and T. Fujimoto: Macromolecules Vol. 24 (1991), p.4433.

Google Scholar

[10] Y. Isono, H. Kawaura, T. Komiyatani and T. Fujimoto: Macromolecules Vol. 24 (1991), p.4437.

Google Scholar

[11] Y. Isono: Nippon Gomu Kyokaishi Vol. 67 (1994), p.873.

Google Scholar

[12] Y. Isono, N. Ohashi and T. Kase: Macromolecules Vol. 28 (1995), p.5154.

Google Scholar

[13] Y. Isono and T. Nishitake: Polymer Vol. 36 (1995), p.1635.

Google Scholar

[14] Y. Isono, T. Kamohara, A. Takano and T. Kase: Rheol. Acta Vol. 36 (1997), p.245.

Google Scholar

[15] Y. Isono: AIP Conference Proceedings Vol. 469 (1999), p.639.

Google Scholar

[16] Y. Isono, M. Tamada and S. Kawahara: ACS Rubber Div., 158th Meeting at Dallas, Paper No. 58 (2000).

Google Scholar

[17] Y. Isono, S. Kawahara and T. Kase: Nihon Reoroji Gakkaishi Vol. 31 (2003), p.201.

Google Scholar

[18] J. E. Mark: J. Phys. Chem. Vol. 107 (2003), p.903.

Google Scholar

[19] J. Yamaguchi, J.C. Busfiels and A.G. Thomas: J. Polym. Sci., Part B, Polym. Phys. Vol. 41 (2003), p. (2079).

Google Scholar

[20] J.C. Busfiled, A.G. Thomas and J. Yamaguchi: J. Polym. Sci., Part B, Polym. Phys. Vol. 42 (2004), p.2161.

Google Scholar