[1]
R. N. Viswanath, S. Ramasamy, R. Ramamoorthy, P. Jayavel and T. Nagarajan, Preparation and characterization of nanocrystalline ZnO based materials for varistor applications, Nanostruct. Mater. 6 (1995) 993–996.
DOI: 10.1016/0965-9773(95)00229-4
Google Scholar
[2]
Y. Yang, X. Zeng, Y. Zeng, L. Liu and Q. Chen, Deposition of quasi-crystal Al-doped ZnO thin films for photovoltaic device applications, Appl. Surf. Sci. 257 (2010) 232–238.
DOI: 10.1016/j.apsusc.2010.06.073
Google Scholar
[3]
J. Chen, X. Yan, W. Liu and Q. Xue, The ethanol sensing property of magnetron sputtered ZnO thin films modified by Ag ion implantation, Sens. Actuators B 160 (2011) 1499.
DOI: 10.1016/j.snb.2011.08.026
Google Scholar
[4]
M. Q. Israr, J. R. Sadaf, M. H. Asif, O. Nur, M. Willander and B. Danielsson, Potentiometric cholesterol biosensor based on ZnO nanorods chemically grown on Ag wire, Thin Solid Films 519 (2010) 1106–1109.
DOI: 10.1016/j.tsf.2010.08.052
Google Scholar
[5]
M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo and P.D. Yang, Room-temperature ultraviolet nanowire nanolasers, Sci. 292 (2001) 1897.
DOI: 10.1126/science.1060367
Google Scholar
[6]
C.R. Gorla, N.W. Emanetoglu, S. Liang, W.E. Mayo, Y. Lu, M. Wraback and H. Shen, Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (011-2) sapphire by metalorganic chemical vapor deposition, J. Appl. Phys. 85 (1999).
DOI: 10.1063/1.369577
Google Scholar
[7]
S.C. Minne, S.R. Manalis and C.F. Quate, Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators, Appl. Phys. Lett. 67 (1995) 3918.
DOI: 10.1063/1.115317
Google Scholar
[8]
Z.L. Wang and J.H. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Sci. 312 (2006) 242-246.
DOI: 10.1126/science.1124005
Google Scholar
[9]
J. Lang, Q. Han, J. Yang, C. Li, X. Li, L. Yang, Y. Zhang, M. Gao, D. Wang and J. Cao, Fabrication and optical properties of Ce-doped ZnO nanorods, J. Appl. Phys. 107 (2010) 074302.
DOI: 10.1063/1.3318613
Google Scholar
[10]
H.L. Yan, X.L. Zhong, J.B. Wang, G.J. Huang, S.L. Ding, G.C. Zhou and Y.C. Zhou, Cathodoluminescence and room temperature ferromagnetism of Mn-doped ZnO nanorod arrays grown by chemical vapor deposition, Appl. Phys. Lett. 90 (2007) 082503.
DOI: 10.1063/1.2460297
Google Scholar
[11]
S. Bayan and D. Mohanta, Directed growth characteristics and optoelectronic properties of Eu-doped ZnO nanorods and urchins, J. Appl. Phys. 108 (2010) 023512.
DOI: 10.1063/1.3462396
Google Scholar
[12]
M.N. Jung, J.E. Koo, S.J. Oh, B.W. Lee, W.J. Lee, S.H. Ha, Y.R. Cho and J.H. Chang, Influence of growth mode on the structural, optical, and electrical properties of In doped ZnO nanorods, Appl. Phys. Lett. 94 (2009) 041906.
DOI: 10.1063/1.3064919
Google Scholar
[13]
S. Khosravi-Gandomani, R. Yousefi, F. Jamali-Sheini and N.M. Huang, Optical and electrical properties of p-type Ag-doped ZnO nanostructures, Ceram. Intern. 40 (2014) 7957–7963.
DOI: 10.1016/j.ceramint.2013.12.145
Google Scholar
[14]
O. Lupan, L. Chow, L.K. Ono, B.R. Cuenya, G. Chai, H. Khallaf, S. Park and A. Schulte, Synthesis and characterization of Ag- or Sb-doped ZnO nanorods by a facile hydrothermal route, J. Phys. Chem. C 114 (2010) 12401–12408.
DOI: 10.1021/jp910263n
Google Scholar
[15]
B.D. Ahn, H.S. Kang, J.H. Kim, G.H. Kim, H.W. Chang and S.Y. Lee, Synthesis and analysis of Ag-doped ZnO, J. Appl. Phys. 100 (2006) 093701.
Google Scholar