Structural and Electrical Properties of Silver-Doped Zinc Oxide Nanorods Array

Article Preview

Abstract:

In this study, silver-doped zinc oxide (ZnO) nanorods were grown by a solution method and the effect of varying the doping concentration on the electrical property and component characteristics of the synthesized ZnO nanorods were studied. The ZnO nanorods were grown in the mixed solution of zinc nitrate hexahydrate (Zn (NO3)2·6H2O), hexamethylenetetramine (C6H12N4), and silver nitrate (AgNO3) at 90oC for 2 hours. The purpose of silver nitrate was to supply dopant atoms. Field-emission scanning electron microscopy (FE-SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) were used to investigate the surface morphology, chemical compositions, and microstructure of silver-doped ZnO nanorods, and the electrical properties were determined by Hall effect measurement. As found by EDS results, dopant atoms Ag have been successfully incorporated into the crystalline structure of ZnO nanorods, and the conductivity, concentration and mobility of majority carrier in ZnO nanorods have been modified accordingly.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

164-168

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. N. Viswanath, S. Ramasamy, R. Ramamoorthy, P. Jayavel and T. Nagarajan, Preparation and characterization of nanocrystalline ZnO based materials for varistor applications, Nanostruct. Mater. 6 (1995) 993–996.

DOI: 10.1016/0965-9773(95)00229-4

Google Scholar

[2] Y. Yang, X. Zeng, Y. Zeng, L. Liu and Q. Chen, Deposition of quasi-crystal Al-doped ZnO thin films for photovoltaic device applications, Appl. Surf. Sci. 257 (2010) 232–238.

DOI: 10.1016/j.apsusc.2010.06.073

Google Scholar

[3] J. Chen, X. Yan, W. Liu and Q. Xue, The ethanol sensing property of magnetron sputtered ZnO thin films modified by Ag ion implantation, Sens. Actuators B 160 (2011) 1499.

DOI: 10.1016/j.snb.2011.08.026

Google Scholar

[4] M. Q. Israr, J. R. Sadaf, M. H. Asif, O. Nur, M. Willander and B. Danielsson, Potentiometric cholesterol biosensor based on ZnO nanorods chemically grown on Ag wire, Thin Solid Films 519 (2010) 1106–1109.

DOI: 10.1016/j.tsf.2010.08.052

Google Scholar

[5] M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo and P.D. Yang, Room-temperature ultraviolet nanowire nanolasers, Sci. 292 (2001) 1897.

DOI: 10.1126/science.1060367

Google Scholar

[6] C.R. Gorla, N.W. Emanetoglu, S. Liang, W.E. Mayo, Y. Lu, M. Wraback and H. Shen, Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (011-2) sapphire by metalorganic chemical vapor deposition, J. Appl. Phys. 85 (1999).

DOI: 10.1063/1.369577

Google Scholar

[7] S.C. Minne, S.R. Manalis and C.F. Quate, Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators, Appl. Phys. Lett. 67 (1995) 3918.

DOI: 10.1063/1.115317

Google Scholar

[8] Z.L. Wang and J.H. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Sci. 312 (2006) 242-246.

DOI: 10.1126/science.1124005

Google Scholar

[9] J. Lang, Q. Han, J. Yang, C. Li, X. Li, L. Yang, Y. Zhang, M. Gao, D. Wang and J. Cao, Fabrication and optical properties of Ce-doped ZnO nanorods, J. Appl. Phys. 107 (2010) 074302.

DOI: 10.1063/1.3318613

Google Scholar

[10] H.L. Yan, X.L. Zhong, J.B. Wang, G.J. Huang, S.L. Ding, G.C. Zhou and Y.C. Zhou, Cathodoluminescence and room temperature ferromagnetism of Mn-doped ZnO nanorod arrays grown by chemical vapor deposition, Appl. Phys. Lett. 90 (2007) 082503.

DOI: 10.1063/1.2460297

Google Scholar

[11] S. Bayan and D. Mohanta, Directed growth characteristics and optoelectronic properties of Eu-doped ZnO nanorods and urchins, J. Appl. Phys. 108 (2010) 023512.

DOI: 10.1063/1.3462396

Google Scholar

[12] M.N. Jung, J.E. Koo, S.J. Oh, B.W. Lee, W.J. Lee, S.H. Ha, Y.R. Cho and J.H. Chang, Influence of growth mode on the structural, optical, and electrical properties of In doped ZnO nanorods, Appl. Phys. Lett. 94 (2009) 041906.

DOI: 10.1063/1.3064919

Google Scholar

[13] S. Khosravi-Gandomani, R. Yousefi, F. Jamali-Sheini and N.M. Huang, Optical and electrical properties of p-type Ag-doped ZnO nanostructures, Ceram. Intern. 40 (2014) 7957–7963.

DOI: 10.1016/j.ceramint.2013.12.145

Google Scholar

[14] O. Lupan, L. Chow, L.K. Ono, B.R. Cuenya, G. Chai, H. Khallaf, S. Park and A. Schulte, Synthesis and characterization of Ag- or Sb-doped ZnO nanorods by a facile hydrothermal route, J. Phys. Chem. C 114 (2010) 12401–12408.

DOI: 10.1021/jp910263n

Google Scholar

[15] B.D. Ahn, H.S. Kang, J.H. Kim, G.H. Kim, H.W. Chang and S.Y. Lee, Synthesis and analysis of Ag-doped ZnO, J. Appl. Phys. 100 (2006) 093701.

Google Scholar