Glycine-Nitrate Combustion Synthesis of ZrO2-Y2O3 Nanopowders

Article Preview

Abstract:

Formation of ZrO2-5 wt.% Y2O3 nanostructured powders in glycine-nitrate combustion synthesis was investigated and the effect of "glycine-to-NO3-" ratio and heating method on the reaction product composition and particle morphology studied. Urea and ammonium nitrate additives were used to optimize the regime of the process. The effect of these reagents on gas generation required for the dispersion of particles, and on the process temperature was investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-43

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Qigen Wang, Ranran Peng, Changrong Xia, Wei Zhu, Huanting Wang, Characteristics of YSZ synthesized with a glycine-nitrate process, Ceramics International. 34 (2008) 1773-1778.

DOI: 10.1016/j.ceramint.2007.06.003

Google Scholar

[2] Tianyou Peng, Xun Liu, Ke Dai, Jiangrong Xiao, Hiabo Song, Effect of acidity on the glycine-nitrate combustion synthesis of nanocrystalline alumina powder, Materials Research Bulleten. 41 (2006) 1638-1645.

DOI: 10.1016/j.materresbull.2006.02.026

Google Scholar

[3] Xiaoming Guo, Dongsen Mao, Guanzhong Lu, Song Wang, Guisheng Wu, Glycine-nitrate combustion synthesis of CuO-ZnO-ZrO2 catalysts for methanol synthesis from CO2 hydrogenation, Journal of Catalysis. 271 (2010) 178-185.

DOI: 10.1016/j.jcat.2010.01.009

Google Scholar

[4] V.D. Zhuravlev, V.G. Bamburov, A.R. Beketov, L.A. Perelayaeva, I.V. Baklanova, O.V. Sivtsova, V.G. Vasil`ev, E.V. Vladimirova, V.G. Shevchenko, I.G. Grigorov, Solution combustion synthesis of a-Al2O3 using urea, Ceramics International. 39 (2013).

DOI: 10.1016/j.ceramint.2012.07.078

Google Scholar

[5] J.C. Toniolo, M.D. Limo, A.S. Takimi, C.P. Bergmann, Synthesis of alumina powder by the glycine-nitrate combustion process, Materials Research Bulleten. 40 (2005) 561-571.

DOI: 10.1016/j.materresbull.2004.07.019

Google Scholar

[6] Tianmin He, Qiang He, Nan Wang, Synthesis of nano-sized YSZ powders from glycine-nitrate process and optimization of their properties, Journal of Alloys and Compounds. 396 (2005) 309-315.

DOI: 10.1016/j.jallcom.2005.01.008

Google Scholar

[7] A.V. Vlasov, I.R. Mukhametdinov, E.I. Denisova, V.V. Kartashov, I.V. Chernetskiy, Strengthening of corundum ceramic with additions of nanopowders, J. Refractories and Industrial Ceramics. 5, No 2 (2010) 104-106.

DOI: 10.1007/s11148-010-9268-7

Google Scholar

[8] V.V. Kartashov, E.I. Denisova, A.V. Vlasov, D. K Aleshin, A.A. Blinnichev, High-strength ceramic based on zirconium dioxide: preparation and properties, J. Refractories and Industrial Ceramics. 51, No 4 (2010) 267-269.

DOI: 10.1007/s11148-010-9303-8

Google Scholar

[9] V.V. Kartashov, A.R. Beketov, A.V. Vlasov, Nanomodified Oxide Ceramic Materials, J. Theoretical Foundations of Chemical Engineering. 44, No 4 (2010) 508-510.

DOI: 10.1134/s0040579510040263

Google Scholar

[10] D.L. Rakhmankulov, I.H. Bikbulatov, N.S. Shulaev, S. Yu. Shavkunova, Microwave radiation and the intensification of chemical processes, Chemistry, Moscow, (2003).

Google Scholar

[11] D.L. Rakhmankulov, S. Yu. Shavkunova, F.N. Latypova, V.V. Zoryn, Microwave engineering application in laboratory research and industry, Journal of Applied Chemistry. 75 (2002) 1409-1416.

Google Scholar