Fabrication and Characterization of Conducting PANI Nanofibers via Electrospinning

Article Preview

Abstract:

In this work, conducting polyaniline (PANI) nanofibers were fabricated by electrospinning technique. PANI (emeraldine-based) and polyvinyl alcohol (PVA) were used as the starting precursors for electrospinning technique and their concentrations were kept at 0.01 and 0.08 g/ml respectively. The effects of electrospinning conditions including volume ratio of polymer solution, operating voltage and injection rate at constant electrospinning distance on the morphologies and size distribution of the fibers were investigated. Scanning electronmicroscopy (SEM) and Fourier transforms infrared (FT-IR) were utilized to characterize morphologies and physical properties of the fibers. The optimized conditions with PVA:PANI (27;3, v/v), 20 kV voltage, 0.8 ml/hr injection rate to fabricate well-defined PVA/PANI nanofibers was acknowledged.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

45-51

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.T. Kang, K.G. Neoh, K.L. Tan, Polyaniline: a polymer with many interesting intrinsic redox states, Prog. Polym. Sci. 23 (1998) 211-324.

DOI: 10.1016/s0079-6700(97)00030-0

Google Scholar

[2] P. Ghosh, S.K. Siddhanta, S.R. Haque, A. Chakrabarti, Stable polyaniline dispersions prepared in nonaqeous medium: synthesis and characterization, Synth. Met. 123 (2001) 83-89.

DOI: 10.1016/s0379-6779(00)00579-8

Google Scholar

[3] J. Stejskal, Polyaniline. Preparation of a conducting polymer, Pure Appl. Chem. 74 (5) (2002) 857-867.

Google Scholar

[4] Z. Jin, Y. Su, Y. Duan, An improved optical pH sensor based on polyaniline, Sens. Actuators B 71 (2000) 118-122.

DOI: 10.1016/s0925-4005(00)00597-9

Google Scholar

[5] Z.F. Li, F.D. Blum, M.F. Bertino, C.S. Kim, S.K. Pillalamarri, One-step fabrication of a polyaniline nanofiber vapor sensor, Sens. Actuators B 134 (2008) 31-35.

DOI: 10.1016/j.snb.2008.04.009

Google Scholar

[6] J. Manuel, P. Raghavan, C. Shin, M.Y. Heo, J.H. Ahn, J.P. Noh, G.B. Cho, H.S. Ryu, H.J. Ahn, Electrosprayed polyaniline as cathode material for lithium secondary batteries, Mater. Res. Bull. 45 (2010) 265-268.

DOI: 10.1016/j.materresbull.2009.12.021

Google Scholar

[7] J.Y. Lin, W.Y. Wang, Y.T. Lin, Characterization of polyaniline counter electrodes for dye-sensitized solar cells, Surf. Coating Tech. 231 (2013) 171-175.

DOI: 10.1016/j.surfcoat.2012.06.039

Google Scholar

[8] M. Matsuguchi, T. Asahi, Properties and stability of polyaniline nanofiber ammonia sensors fabricated by novel on-substrate method, Sens. Actuators B 160 (2011) 999-1004.

DOI: 10.1016/j.snb.2011.09.017

Google Scholar

[9] J. Jang, J. Bae, M. Choi, S.H. Yoon, Fabrication and characterization of polyaniline coated carbon nanofiber for supercapacitor, Carbon 43 (2005) 2730–2736.

DOI: 10.1016/j.carbon.2005.05.039

Google Scholar

[10] Y. Ali, V. Kumar, R.G. Sonkawade, M.D. Shirsat, A.S. Dhaliwal, Two-step electrochemical synthesis of Au nanoparticles decorated polyaniline nanofiber, Vacuum 93 (2013) 79-83.

DOI: 10.1016/j.vacuum.2013.01.007

Google Scholar

[11] Q. Lin, Y. Li, M. Yang, Polyaniline nanofiber humidity sensor prepared by electrospinning, Sens. Actuators B 161 (2012) 967-972.

DOI: 10.1016/j.snb.2011.11.074

Google Scholar

[12] Q. Wua, D. Wua, Y. Guan, Polyaniline sheathed electrospun nanofiber bar for in vivo extraction of trace acidic phytohormones in plant tissue, J. Chromatogr. A1342 (2014) 16-23.

DOI: 10.1016/j.chroma.2014.03.055

Google Scholar

[13] A. Rogina, Electrospinning process: Versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery, Appl. Surf. Sci. 296 (2014) 221-230.

DOI: 10.1016/j.apsusc.2014.01.098

Google Scholar

[14] M. Shahi, A. Moghimi, B. Naderizadeh, B. Maddah, Electrospun PVA–PANI and PVA–PANI–AgNO3 composite nanofibers, Scientia Iranica C 18 (6) (2011) 1327-1331.

DOI: 10.1016/j.scient.2011.08.013

Google Scholar

[15] Q.Z. Yu, Y. Li, M. Wang, H.Z. Chen, Polyaniline nanobelts, flower-like and rhizoid-like nanostructures by electrospinning, Chin. Chem. Lett. 19 (2008) 223–226.

DOI: 10.1016/j.cclet.2007.12.005

Google Scholar

[16] B. Sundaray, A. Choi, Y.W. Park, Highly conducting electrospun polyaniline-polyethylene oxide nanofibrous membranes filled with single-walled carbon nanotubes, Synth. Met. 160 (2010) 984–988.

DOI: 10.1016/j.synthmet.2010.02.013

Google Scholar

[17] A. Macagnano, E. Zampetti, S. Pantalei, F. De Cesare, A. Bearzotti, K.C. Persaud, Nanofibrous PANI-based conductive polymers for trace gas analysis, Thin Solid Films 520 (2011) 978–985.

DOI: 10.1016/j.tsf.2011.04.175

Google Scholar

[18] M. R. Karim, Fabrication of electrospun aligned nanofibers from conducting polyaniline copolymer/polyvinyl alcohol/chitosan oligossacaride in aqueous solutions, Synth. Met. 178 (2013) 34– 37.

DOI: 10.1016/j.synthmet.2013.06.014

Google Scholar

[19] V.V. Chabukswar, S. Pethkar, A.A. Athawale, Acrylic acid doped polyaniline as an ammonia sensor, Sens. Actuators B 77 (2001) 657-663.

DOI: 10.1016/s0925-4005(01)00780-8

Google Scholar

[20] C.J. Buchko, L.C. Chen, Y. Shen, D.C. Martin, Processing and microstructural characterization of porous biocompatible protein polymer thin films, Polymer 40 (1999) 7397–7407.

DOI: 10.1016/s0032-3861(98)00866-0

Google Scholar

[21] J.M. Deitzel, J. Kleinmeyer, D. Harris, N.C.B. Tan, The effect of processing variables on the morphology of electrospun nanofibers and textiles, Polymer 42 (2001) 261–272.

DOI: 10.1016/s0032-3861(00)00250-0

Google Scholar

[22] V. Beachley, X. Wen, Effect of electrospinning parameters on the nanofibers diameter and length, Mater. Sci. Eng C 35 (2009) 663-668.

Google Scholar