Low Temperature Synthesis of Yttrium-Stabilized Zirconia (YSZ) Fibers by Non-Hydrolytic Sol-Gel Method

Article Preview

Abstract:

Yttrium-stabilized zirconia fibers were prepared at low temperature via a novel non-hydrolytic sol-gel (NHSG) method by using anhydrous zirconium chloride as precursor, ethanol as oxygen donor, yttrium hydride as stabilizer, dibasic ester (DBE) as solvent, ethoxyline as spinning aid. DTA-TG, XRD, FT-IR, FE-SEM and TEM were used to characterize samples. The results show that the YSZ tetragonal zirconia can be synthesized at 410 °C and the formation of =Y-O-Zr≡ bond is the key for the low temperature synthesis tetragonal zirconia. Zirconia fibers calcined at 800 °C have a smooth surface, free of crack and dense section. The diameter of fibers are in the range of 5~10 μm. The addition of ethoxyline can make the colloidal particles linear growth which is the basic reason for the spinnability of the sol.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-106

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Abe, T. Kudo, H. Tomioka, Preparation of continuous zirconia fibres from polyzirconoxane synthesized by the facile one-pot reaction, J. Mater. Sci. 33 (1998) 1863-1870.

DOI: 10.1023/a:1004357405815

Google Scholar

[2] Y. Abe, H. Tomioka, T. Gunji, A one-pot synthesis of polyzirconoxane as a precursor for continuous zirconia fibres, J. Mater. Sci. Lett. 13 (1994) 960-962.

DOI: 10.1007/bf00701437

Google Scholar

[3] P. K. Chakrabarty, M. Chatterjee, M.K. Naskar, Zirconia fibre mats prepared by a sol-gel spinning technique, J. Eur. Ceram. Soc. 21 (2001) 355-361.

DOI: 10.1016/s0955-2219(00)00196-5

Google Scholar

[4] X. Ye, J. Kuang, X. Li, G. Tang. Microstructure, properties and temperature evolution of electro-pulsing treated functionally graded Ti–6Al–4V alloy strip. J. Alloys Compd. 599 (2014) 1-9.

DOI: 10.1016/j.jallcom.2014.02.055

Google Scholar

[5] X. Ye, G. Tang, G. Song, J. Kuang. Effect of electropulsing treatment on the microstructure, texture, and mechanical properties of cold-rolled Ti–6Al–4V alloy. J. Mater. Res. 29 (2014) 1500-12.

DOI: 10.1557/jmr.2014.171

Google Scholar

[6] X. Ye, X. Li, G. Song, G. Tang. Effect of recovering damage and improving microstructure in the titanium alloy strip under high-energy electropulses. J. Alloys Compd. 616 (2014) 173-83.

DOI: 10.1016/j.jallcom.2014.07.143

Google Scholar

[7] X. Ye, Y. Ye, G. Tang. Effect of electropulsing treatment and ultrasonic striking treatment on the mechanical properties and microstructure of biomedical Ti-6Al-4V alloy. J. Mech. Behav. Biomed. 40 (2014) 287-96.

DOI: 10.1016/j.jmbbm.2014.08.022

Google Scholar

[8] H.Y. Liu, X.Q. Hou, X.Q. Wang, Fabrication of high-strength continuous zirconia fibers and their formation mechanism study, J. Am. Ceram. Soc. 87 (2004) 2237-2241.

Google Scholar

[9] P. Niu, The Preparation and Application of Metal Oxide Fibers, Sci. Tech. Info. D&E. 19 (2009) 137-139.

Google Scholar

[10] A. Nishimura, N. Komastu, G. Mitsui, CO2 reforming into fuel using TiO2 photocatalyst and gas separation membrance, Catal. Today. 148 (2009) 341-349.

DOI: 10.1016/j.cattod.2009.07.067

Google Scholar

[11] G. Yu, L. Zhu, X. Wang, Fabrication of zirconia mesoporous fibers by using polyorganozirconium compound as precursor, Microporous Mesoporous Mater. 119 (2009) 230-236.

DOI: 10.1016/j.micromeso.2008.10.029

Google Scholar

[12] A.M. Azad, Fabrication of yttria-stabilized zirconia nanofibers by electrospinning, Mater. Lett. 60 (2006) 67-72.

DOI: 10.1016/j.matlet.2005.07.085

Google Scholar

[13] J. Li, X. Jiao, D. Chen, Preparation of zirconia fibers via a simple aqueous sol-gel method, J. Dispersion Sci. Technol. 28 (2007) 531-535.

DOI: 10.1080/01932690701277120

Google Scholar

[14] A. Vioux, Nonhydrolytic sol−gel routes to oxides, Chem. Mater. 9 (1997) 2292-2299.

DOI: 10.1021/cm970322a

Google Scholar

[15] J.P. Abraham, I.H. Joe, V. George, Vibrational spectroscopic studies on the natural product, columbianadin, Spectrochim. Acta. Part A. 59 (2003) 193-199.

DOI: 10.1016/s1386-1425(02)00148-8

Google Scholar

[16] R.G. Silver, C.J. Hou, J.G. Ekerdt, The role of lattice anion vacancies in the activation of CO and as the catalytic site for methanol synthesis over zirconium dioxide and yttria-doped zirconium dioxide, J. Catal. 118 (1989) 400-416.

DOI: 10.1016/0021-9517(89)90327-8

Google Scholar

[17] W.H. Jiang, G. Feng, J.M. Liu, Preparation of aluminum titanate film via non-hydrolytic sol-gel method and its fused salt corrosion resistance, J. Chin. Ceramic. Soc. 38 (2010) 783-787.

Google Scholar

[18] W.H. Jiang, H.Y. Wei, G. Feng, Effect of oxygen donor alcohols on low temperature non-hydrolytic sol-gel synthesis of aluminum titanate, J. Chin. Ceram. Soc. 36 (2008) 11-16.

Google Scholar

[19] D. W. Marshall, N. Reading, Mass, U.S. Patent 4, 323, 599. (1982).

Google Scholar