Anomalous Effect on the Phononic Thermal Conductivity of Silicene Nanoribbon by Hydrogenation

Article Preview

Abstract:

Silicene is a two-dimensional (2D) allotrope of silicon known to have a lower thermal conductivity than graphene; thus, more suitable for thermoelectric applications. This paper investigates the effect of hydrogenation on the thermal conductivity of silicene nanoribbon (SiNR) using equilibrium molecular dynamics (EMD) simulations. The simulations were carried out in Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) using a modified Tersoff potential that considers both Si-Si and Si-H interactions. The thermal conductivity of fully hydrogenated silicene nanoribbon (H-SiNR), also known as silicane nanoribbon, was found to be higher than that of pristine SiNR in all the temperatures and dimensions considered here. This anomalous enhancement in the thermal conductivity is similar to that found in hydrogenated silicon nanowires (H-SiNWs). A mechanism for this anomalous effect has been proposed relating the hydrogenation of SiNR with the stiffening and increase of the acoustic out-of-plane flexural (ZA) phonon modes. Also, for both SiNR and H-SiNR, the thermal conductivities generally increase as the dimensions are increased while they generally decrease as the temperatures are increased, in agreement to other reports.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

110-114

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, and S. Ciraci: Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. Vol. 102 (2009) 236804.

DOI: 10.1103/physrevlett.102.236804

Google Scholar

[2] C. -C. Liu, W. Feng, and Y. Yao: Quantum spin hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. Vol. 107 (2011) 076802.

DOI: 10.1103/physrevlett.107.076802

Google Scholar

[3] Z. Ni, H. Zhong, X. Jiang, R. Quhe, G. Luo, Y. Wang, M. Ye, J. Yang, J. Shi, and J. Lu: Tunable band gap and doping type in silicene by surface adsorption: towards tunneling transistors. Nanoscale Vol. 6 (2014) 7609.

DOI: 10.1039/c4nr00028e

Google Scholar

[4] R. Quhe, R. Fei, Q. Liu, J. Zheng, H. Li, C. Xu, Z. Ni, Y. Wang, D. Yu, Z. Gao, and J. Lu: Tunable and sizable band gap in silicene by surface adsorption. Sci. Rep. Vol. 2 (2012) 853.

DOI: 10.1038/srep00853

Google Scholar

[5] Z. Ni, Q. Liu, K. Tang, J. Zheng, J. Zhou, R. Qin, Z. Gao, D. Yu, and J. Lu: Tunable bandgap in silicene and germanene. Nano Lett. 12 (2012), p.113.

DOI: 10.1021/nl203065e

Google Scholar

[6] H. Xie, M. Hu, and H. Bao: Thermal conductivity of silicene from first-principles. Appl. Phys. Lett. Vol. 104 (2014) 131906, p.1.

Google Scholar

[7] X. Gu and R. Yang: First-principles prediction of phononic thermal conductivity of silicene: a comparison with graphene. ArXiv e-prints 1404. 2874 (2014).

Google Scholar

[8] B. Liu, C.D. Reddy, J. Jiang, H. Zhu, J.A. Baimova, S.V. Dmitriev, and K. Zhou: Thermal conductivity of silicene nanosheets and the effect of isotopic doping. J. Phys. D: Appl. Phys. Vol. 47 (2014), p.1.

DOI: 10.1088/0022-3727/47/16/165301

Google Scholar

[9] X. Zhang, H. Xie, M. Hu, H. Bao, S. Yue, G. Qin, and G. Su: Thermal conductivity of silicene calculated using an optimized Stillinger-Weber potential. Phys. Rev. B Vol. 89 (2014) 054310.

DOI: 10.1103/physrevb.89.054310

Google Scholar

[10] T.Y. Ng, J. Yeo, and Z. Liu: Molecular dynamics simulation of the thermal conductivity of shorts strips of graphene and silicene: a comparative study. Int. J. Mech. Mater. Des. Vol. 9 (2013).

DOI: 10.1007/s10999-013-9215-0

Google Scholar

[11] J.J. Yeo and Z.S. Liu: Molecular dynamics analysis of the thermal conductivity of graphene and silicene monolayers of different lengths. J. Comput. Theor. Nanosci. Vol. 11(8) (2014), p.1790.

DOI: 10.1166/jctn.2014.3568

Google Scholar

[12] Q. -X. Pei, Y. -W. Zhang, Z. -D. Sha, and V.B. Shenoy: A theoretical analysis of the thermal conductivity of hydrogenated graphene. J. Appl. Phys. Vol. 114 (2013) 033526.

Google Scholar

[13] M. Hu, X. Zhang, and D. Poulikakos: Anomalous thermal response of silicene to uniaxial stretching. Phys. Rev. B Vol. 87 (2013), p.195417.

DOI: 10.1103/physrevb.87.195417

Google Scholar

[14] Q.X. Pei, Z.D. Sha, and Y.W. Zhang: A theoretical analysis of the thermal conductivity of hydrogenated graphene. Carbon Vol. 49 (2011), p.4752.

DOI: 10.1016/j.carbon.2011.06.083

Google Scholar

[15] R. Pan, Z. Xu, Z. Zhu, and Z. Wang: Thermal conductivity of functionalized single-wall carbon nanotubes. Nanotech. Vol. 18 (2007) 285704.

DOI: 10.1088/0957-4484/18/28/285704

Google Scholar

[16] N. Attaf, M.S. Aida, and L. Hadjeris: Thermal conductivity of hydrogenated amorphous silicon. Solid State Comm. Vol. 120 (2001) 525.

DOI: 10.1016/s0038-1098(01)00428-8

Google Scholar

[17] H.P. Li and R.Q. Zhang: Anomalous effect of hydrogenation on phonon thermal conductivity in thin silicon nanowires. Europhys. Lett. Vol. 105 (2014), p.56003.

DOI: 10.1209/0295-5075/105/56003

Google Scholar

[18] S. Plimpton: Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. Vol. 117 (1995).

Google Scholar

[19] F. Liu, C. -C. Liu, K. Wu, F. Yang, and Y. Yao: d+id' chiral superconductivity in bilayer silicene. Phys. Rev. Lett. Vol. 111 (2013) 066804, p.6.

Google Scholar

[20] C. Kamal, A. Chakrabarti, A. Banerjee, and S.K. Deb: Silicene beyond mono-layers—different stacking configurations and their properties. J. Phys.: Condens. Matter Vol. 25 (2013) 085508.

DOI: 10.1088/0953-8984/25/8/085508

Google Scholar

[21] J. Kim and M.V. Fischetti: Structural, electronic, and transport properties of silicane nanoribbons. Phys. Rev. B Vol. 86 (2012) 205323, p.2.

DOI: 10.1103/physrevb.86.205323

Google Scholar

[22] More information available at http: /www. codeblocks. org.

Google Scholar

[23] J. Tersoff: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B Vol. 37 (1988).

Google Scholar

[24] F. de Brito Mota, J.F. Justo, and A. Fazzio: Structural properties of amorphous silicon nitride. J. Appl. Phys. Vol. 86 (1999), p.1843.

DOI: 10.1063/1.370977

Google Scholar

[25] T.H. Osborn, A.A. Farajian, O.V. Pupysheva, R.S. Aga, and L.C. Lew Yan Voon: Ab initio simulations of silicene hydrogenation. Chem. Phys. Lett. Vol. 511 (2011), p.103.

DOI: 10.1016/j.cplett.2011.06.009

Google Scholar