Influence of Substrate Temperature on the Optoelectronic Properties of CuPc Thin Film

Article Preview

Abstract:

The copper phthalocyanine thin films were deposited on quartz and Si/SiO2 substrates at different substrate temperatures. The morphologies, structures and optical properties of CuPc films were characterized by scanning electron microscopy, X-ray diffra ction and UV-Visible spectroscopy. The polymorph of alpha–CuPc was observed in films deposited at temperature ranging from 20°C to 145°C. The transmission and absorption spectra of CuPc films deposited at different temperatures are presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

123-126

Citation:

Online since:

May 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.M. Tadayyon, H.M. Grandin, K. Griffiths, P.R. Norton, H. Aziz and Z.D. Popovic, CuPc buffer layer role in OLED performance: a study of the interfacial band energies, Org Electron. 5 (2004) 157-166.

DOI: 10.1016/j.orgel.2003.10.001

Google Scholar

[2] F. Yang, M. Shtein and S.R. Forrest, Controlled growth of a molecular bulk heterojunction photovoltaic cell, Nature Materials. 4 (2004) 37-41.

DOI: 10.1038/nmat1285

Google Scholar

[3] C. Kodituwakku, C. Burns, A. Said, H. Sinn, X. Wang, T. Gog, D. Casa and M. Tuel, Resonant inelastic x-ray scattering studies of the organic semiconductor copper phthalocyanine, Physical Review B. 77 (2008).

DOI: 10.1103/physrevb.77.125205

Google Scholar

[4] Y. Sadaoka, T.A. Jones, G.S. Revell and W. Göpel, Effects of morphology on NO2 detection in air at room temperature with phthalocyanine thin films, Journal of Materials Science. 25 (1990) 5257-5268.

DOI: 10.1007/bf00580159

Google Scholar

[5] Z. Bao, A.J. Lovinger and A. Dodabalapur, Organic field-effect transistors with high mobility based on copper phthalocyanine, Appl Phys Lett. 69 (1996) 3066.

DOI: 10.1063/1.116841

Google Scholar

[6] H. Wang, S. Mauthoor, S. Din, J.A. Gardener, R. Chang, M. Warner, G. Aeppli, D.W. McComb, M.P. Ryan, W. Wu, A.J. Fisher, M. Stoneham and S. Heutz, Ultralong copper phthalocyanine nanowires with new crystal structure and broad optical absorption, ACS Nano. 4 (2010).

DOI: 10.1021/nn100782w

Google Scholar

[7] K. Xiao, Y. Liu, G. Yu and D. Zhu, Influence of the substrate temperature during deposition on film characteristics of copper phthalocyanine and field-effect transistor properties, Applied Physics A: Materials Science & Processing. 77 (2003).

DOI: 10.1007/s00339-003-2169-6

Google Scholar

[8] Y. -L. Lee, W. -C. Tsai and J. -R. Maa, Effects of substrate temperature on the film characteristics and gas-sensing properties of copper phthalocyanine films, Appl Surf Sci. 173 (2001) 352-361.

DOI: 10.1016/s0169-4332(01)00019-8

Google Scholar

[9] M. Komiyama, Y. Sakakibara and H. Hirai, Preparation of highly ordered ultrathin films of copper(II) phthalocyanine on amorphous substrates by molecular beam deposition, Thin Solid Films. 151 (1987) L109-L110.

DOI: 10.1016/0040-6090(87)90016-2

Google Scholar

[10] S. Ambily, F.P. Xavier and C.S. Menon, Photoconductivity measurements in lead phthalocyanine thin films, Mater Lett. 41 (1999) 5-8.

DOI: 10.1016/s0167-577x(99)00094-4

Google Scholar

[11] E.A. Lucia and F.D. Verderame, Spectra of Polycrystalline Phthalocyanines in the Visible Region, The Journal of Chemical Physics. 48 (1968) 2674-2681.

DOI: 10.1063/1.1669501

Google Scholar

[12] L. Edwards and M. Gouterman, Porphyrins: XV. Vapor absorption spectra and stability: Phthalocyanines, I Mol Spectrosc. 33 (1970) 292-310.

Google Scholar

[13] A. Ritz and H. Luth, The electronic structure of GaP (110) and Cu-Phthalocyanine overlayers studied by ellipsometry, Applied Physics A Solids and Surfaces. 31 (1983) 75-80.

DOI: 10.1007/bf00616308

Google Scholar

[14] B.H. Schechtman and W.E. Spicer, Near infrared to vacuum ultraviolet absorption spectra and the optical constants of phthalocyanine and porphyrin films, I Mol Spectrosc. 33 (1970) 28-48.

DOI: 10.1016/0022-2852(70)90050-0

Google Scholar