Structural, Morphological and Electrical Characteristics of Sol-Gel Prepared Lithium Triflate - Alumina Composite Electrolyte

Article Preview

Abstract:

The objective of this work is to study the structural, morphological and electrical characteristics of lithium triflate-alumina composite electrolytes which were prepared via sol-gel technique. For this purpose, the composite electrolyte pallet samples which were sintered at 300 °C for four hours were subjected to X-ray diffraction, scanning electron microscopy, impedance spectroscopy and transference number measurement. X-ray diffraction spectra and scanning electron micrographs indicated that the crystalline alumina was distributed over the amorphous lithium triflate phase implying that the two-phases of microstructure (lithium triflate and alumina) interspersed each other. The highest ionic conductivity of 2.86 × 10-3 S cm-1 at room temperature was obtained for the sample with 60 mol % alumina. Temperature dependence of conductivity study was performed in the 303 K to 423 K temperature range and the trend of conductivity-temperature plot suggested that the increase in conductivity was due to the increase in migration rate of ions with temperature. The non-Arrhenius plot of the conductivity-temperature was due to continuous freezing of cations within the amorphous triflate medium. The value of ionic transference number indicated that the majority charge carriers in this composite electrolyte were ions while the value of Li+ transference number suggested that the majority of the ions were anions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

151-157

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. C. Agrawal and R. K. Gupta, Review Superionic solids: composite electrolyte phase – an overview, Journal of Materials Science 34 (1999) 1131-1162.

Google Scholar

[2] T. Inada, K. Takada, A. Kajiyama, M. Kouguchi, H. Sasaki, S. Kondo, M. Watanabe, M. Murayama, R. Kanno, Fabrications and properties of composite solid-state electrolytes, Solid State Ionics 158 (2003) 275-280.

DOI: 10.1016/s0167-2738(02)00823-8

Google Scholar

[3] J. E. Trevey, Y. S. Jung and S. H. Lee, Preparation of Li2S-GeSe2-P2S5 electrolytes by a single step ball milling for all-solid-state lithium secondary batteries, Journal of Power Sources 195 (2010) 4984-4989.

DOI: 10.1016/j.jpowsour.2010.02.042

Google Scholar

[4] B. Zhu, Z. H. Lai and B. –E. Mellander, Structure and ionic conductivity of lithium sulphate aluminum oxide ceramics, Solid State Ionic 70-71 (1994) 125-129.

DOI: 10.1016/0167-2738(94)90296-8

Google Scholar

[5] P. K. Singh, K. –W. Kim, K. –I. Kim, N. –G. Park and H. –W. Rhee, Nanocrystalline porous TiO2 electrode with ionic liquid impregnated solid polymer electrolyte for dye sensitized solar cells. Journal of Nanoscience and Nanotechnology 8 (2008).

DOI: 10.1166/jnn.2008.1069

Google Scholar

[6] C. C. Liang, Conduction Characteristics of the Lithium Iodide-Aluminum Oxide Solid Electrolytes. Journal of the Electrochemical Society 120 (1973) 1289.

DOI: 10.1149/1.2403248

Google Scholar

[7] N. F. Uvarov, V. P. Isupov, V. Sharma and A. K. Shukla, Effect of morphology and particle size on the ionic conductivites of composite solid electrolytes. Solid State Ionics 51 (1992) 41-52.

DOI: 10.1016/0167-2738(92)90342-m

Google Scholar

[8] V. G. Ponomareva, N. F. Uvarov, G. V. Lavrova and E. F. Hairetdinov, Composite protonic solid electrolytes in the CsHSO4-SiO2 system, Solid State Ionics 90 1996 161-166.

DOI: 10.1016/s0167-2738(96)00410-9

Google Scholar

[9] M.M.E. Jacob, S. Rajendran, R. Gangadharan, M.S. Micheal and S.R.S. Prabaharan, Effect of dispersion of CeO2 in the ionic conductivity of Li2MnCl4, Solid State Ionics 86-88 (1996) 592-602.

DOI: 10.1016/0167-2738(96)00214-7

Google Scholar

[10] R. C. Agrawal, R. K. Gupta, C. K. Sinha, R. Kumar and G. P. Pandey, Transport properties and battery discharge characteristics of the Ag+ ion conducting composite electrolyte system (1−x)[0. 75AgI: 0. 25AgCl]: xFe2O3, Ionics 10 (2004) 113-117.

DOI: 10.1007/bf02410317

Google Scholar

[11] H. Yamada, I. Moriguchi and T. Kudo, Nano-structured Li-ionic conductive composite solid electrolyte synthesized by using mesoporous SiO2. Solid State Ionics 176 (2005) 945-953.

DOI: 10.1016/j.ssi.2004.11.013

Google Scholar

[12] S. W. Kwon and S. B. Park, Effect of precursor on the preparation of lithium aluminate, Journal of Nuclear Materials 246 (1997) 131-138.

Google Scholar

[13] M. Sulaiman, N. A. Dzulkurnain, A. A. Rahman and N. S. Mohamed, Sol-gel synthesis and characterization of LiNO3-Al2O3 composite solid electrolyte, Solid State Sciences 14 (2011) 127-132.

DOI: 10.1016/j.solidstatesciences.2011.11.008

Google Scholar

[14] A. R. West, Solid State Chemistry and Its Applications, John Wiley and Sons, New York, (1984).

Google Scholar

[15] W. Dieterich, O. Dürr, P. Pendzig, A. Bunde and A. Nitzan, Percolation concepts in solid state ionics, Physica A : Statistical Mechanics and its Applications 266 (1999) 229-237.

DOI: 10.1016/s0378-4371(98)00597-4

Google Scholar

[16] N. F. Uvarov, Estimation of composites conductivity using a general mixing rule. Solid State Ionics 136-137 (2000) 1267-1272.

DOI: 10.1016/s0167-2738(00)00585-3

Google Scholar

[17] M. Marzantowicz, J. R. Dygas, F. Krok, E. Z. Monikowska and Z. Florjancsyk, In-situ study of the influence of crystallization on the ionic conductivity of polymer electrolytes. Material Science Poland 24 (2006) 195-203.

DOI: 10.1016/j.electacta.2005.02.098

Google Scholar

[18] Z. Gadjourova, Y. G. Andreev, D. P. Tunstall and P. G. Bruce, Ionic conductivity in crystalline polymer electrolytes, Nature 412 (2011) 520-523.

DOI: 10.1038/35087538

Google Scholar

[19] A. Bunde, Application of percolation theory in composites and glasses, Solid State Ionics 75 (1995) 147-155.

DOI: 10.1016/0167-2738(94)00146-j

Google Scholar

[20] R. H. Y. Subban, M. Z. A. Yahya, R. Puteh and A. K. Arof, Two percolations model for conductivity-salt concentration in PVC-LiPF6 system, Indonesian Journal of Physics 15 (2004) 51-53.

Google Scholar

[21] N. F. Uvarov, E. F. Hairetdinov and I. V. Skobelev, Composite solid electrolytes MeNO3-Al2O3 (Me=Li, Na, K), Solid State Ionics 86-88 (1996) 577-580.

DOI: 10.1016/0167-2738(96)00208-1

Google Scholar

[22] R. M. Neagu, E. Neagu, N. Bonanos and P. Pisses, Electrical conductivity studies in nylon 11, Journal of Applied Physics 88 (2000) 6669-6677.

DOI: 10.1063/1.1323752

Google Scholar

[23] C. T. Moynihan, Analysis of electrical relaxation in glasses and melts with large concentrations of mobile ions, Journal of Non-Crystalline Solids 172-174 (1994) 1395-1407.

DOI: 10.1016/0022-3093(94)90668-8

Google Scholar

[24] E. A. Rietman, M. L. Kaplan and R. J. Cava, Lithium ion poly(ethylene oxide)complexes. I. Effect of anion on conductivity, Solid State Ionics 17 (1985) 67-73.

DOI: 10.1016/0167-2738(85)90124-9

Google Scholar

[25] S. Gopal, S. A. Agnihotry and V. D. Gupta, Ionic conductivity in poly(vinylbutyral) based polymeric electrolytes: Effect of Solvents and salts, Solar Energy Materials and Solar Cells 44 (1996) 6-12.

DOI: 10.1016/0927-0248(96)00023-2

Google Scholar

[26] V. Aravindan, J. Gnanaraj, S. Madhavi and H. K. Liu, Lithium ion conducting electrolyte salts for lithium batteries, Chemistry – A European Journal 17 (2011) 14326-14346.

DOI: 10.1002/chem.201101486

Google Scholar