Chemical Interaction, Conductivity and Thermal Properties of Kappa Carrageenan Based Polymer Electrolytes

Article Preview

Abstract:

With the growth of green technology, the usage of biopolymer becomes important. The potential of kappa carrageenan as a host polymer consisting of different concentration of acetic acid was investigated in this study. The polymer electrolyte of kappa carrageenan was prepared by solution-casting technique. The attenuated reflection Fourier transform infrared (ATR-FTIR) spectroscopy showed there are shifting of wavenumber that represents hydroxyl, sulphate and ether stretching which confirmed the formation of polymer- acetic acid complex. The electrochemical impedance spectroscopy (EIS) showed the highest conductivity achieved was 4.48 ×10-7 S cm−1 for kappa carrageenan incorporated with 5% acetic acid at room temperature and thermo gravimetric analysis (TGA) showed that polymer electrolyte based on kappa carrageenan exhibited good thermal stability with a decomposition temperature higher than 200 °C. These indicate that kappa carrageenan display good thermal and conductivity properties which can be applied as a host polymer for solid polymer electrolyte application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

168-174

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Shin JH, Henderson WA, Passerini S (2005) An Elegant Fix for Polymer Electrolytes, Electrochemical and Solid-State Letters, 8 (2) A125-A127.

DOI: 10.1149/1.1850387

Google Scholar

[2] Burey P, Bhandari BR, Howes T, Gidley MJ (2008) Hydrocolloid gel particles: formation, characterization, and application. Critical Reviews in Food Science and Nutrition, 48: 361-377.

DOI: 10.1080/10408390701347801

Google Scholar

[3] Pereira L, van de Velde F (2011) Portuguese carrageenophytes: carrageenan composition and geographic distribution of eight species (Gigartinales, Rhodophyta). Carbohydrate Polymers, 84, 614-623.

DOI: 10.1016/j.carbpol.2010.12.036

Google Scholar

[4] Wong W Y, Sahidan S, Rohaya M A W, Nazaruddin R, Shahrul H Z A (2012) Cytotoxicity and antibacterial study of carrageenan and seaweed powder 131-136.

Google Scholar

[5] Sook WC, Hamed M, Farah ST, Tau CL, Chin PT (2013).

Google Scholar

[6] Dyrby M, Petersen RV, Larsen J, Rudolf B, Norgaard L, Engelsen, SB (2004) Towards on-line monitoring of the composition of commercial carrageenan powders. Carbohydrate Polymers, 57: 337-348.

DOI: 10.1016/j.carbpol.2004.05.015

Google Scholar

[7] Park SY, Lee BI, Jung ST, Park HJ (2001) Biopolymer composite films based on k-carrageenan and chitosan, Materials Research Bulletin 36: 511–519.

DOI: 10.1016/s0025-5408(01)00545-1

Google Scholar

[8] Aldalbahi A, Chu J, Feng P, Panhuis, M (2012) Conducting composite materials from the biopolymer kappa-carrageenan and carbon nanotubes. Beilstein Journal of Nanotechnology, 3 : 415-427.

DOI: 10.3762/bjnano.3.48

Google Scholar

[9] Mobarak NN, Ramli N, Ahmad A, Rahman MYA (2012) Chemical interaction and conductivity of carboxymethyl κ-carrageenan based green polymer electrolyte. Solid State Ionics 224: 51–57.

DOI: 10.1016/j.ssi.2012.07.010

Google Scholar

[10] Fan L, Wang L, Gao S, Wu P, Li M, Xie W, Liu S, Wang W (2011) Synthesis, characterization and properties of carboxymethyl kappa carrageenan. Carbohydrate Polymers 86: 1167– 1174.

DOI: 10.1016/j.carbpol.2011.06.010

Google Scholar

[11] Fujishima M, Matsuo Y, Takatori H, Uchida K, (2008) Proton-conductive acid–base complex consisting of κ-carrageenan and 2-mercaptoimidazole. Electrochemistry Communications 10: 1482-1485.

DOI: 10.1016/j.elecom.2008.07.040

Google Scholar

[12] Silva FRF, Dore CMPG, Marques CT, Nascimento MS, Benevides NMB, Rocha HAO, Chavante SF, Leite EL (2010).

Google Scholar

[13] Chen XG, Park HJ (2003) Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions. Carbohydrate Polymers 53: 355–359.

DOI: 10.1016/s0144-8617(03)00051-1

Google Scholar

[14] Kačuráková M, Wilson RH (2001) Developments in mid-infrared FT-IR spectroscopy of selected carbohydrates. Carbohydrate Polymers 44: 291–303.

DOI: 10.1016/s0144-8617(00)00245-9

Google Scholar

[15] Usov AI (1984) NMR spectroscopy of red seaweed polysaccharides: Agars, carrageenans, and xylans. Botanica Marina 27: 189–202.

DOI: 10.1515/botm.1984.27.5.189

Google Scholar

[16] Tranquilan-Aranillaa C, Nagasawa N, Bayquen A, Rosa AD (2012) Synthesis and characterization of carboxymethyl derivatives of kappa-carrageenan. Carbohydrate Polymers 87: 1810– 1816.

DOI: 10.1016/j.carbpol.2011.10.009

Google Scholar

[17] Noor SAM, Ahmad A, Talib I A, Rahman MYA (2010) Morphology, chemical interaction, and conductivity of a PEO-ENR50 based on solid polymer electrolyte. Ionics 16: 161–170.

DOI: 10.1007/s11581-009-0385-6

Google Scholar

[18] Uma, T., Mahalingam, T. & Stimming, U. (2003) Mixed phase solid polymer electrolytes based on poly (methylmethacrylate). Materials Chemistry and Physics, 82 (2), 478 – 483.

DOI: 10.1016/s0254-0584(03)00277-3

Google Scholar

[19] Mobarak NN, Ahmad A, Abdullah MP, Ramli N, Rahman MYA (2013) Conductivity enhancement via chemical modification of chitosan based green polymer electrolyte, Electrochimica Acta 92: 61– 167.

DOI: 10.1016/j.electacta.2012.12.126

Google Scholar

[20] Shanti R. D/O Rajantharan, Investigation On The Effects Of Ionic Liquid And Ionic Mixture In Biodegradable Polymer Electrolytes Master Of Science Facultyof Engineering And Science Universiti Tunku Abdul Rahman February (2011).

Google Scholar

[21] Yahya, M. Z. A., Ali, A. M. M., Mohammat, M. F., Hanafiah, M. A. K. M., Mustaffa, M., Ibrahim, S. C., Darus, Z. M. & Harun, M. K. (2006).

Google Scholar

[22] Stephan A M, Saito Y, Muniyandi N, Renganathan N G, Kalyanasundaram S, Elizabeth R N (2002) Preparation and characterization of PVC/PMMA blend polymer electrolytes complexed with LiN(CF3SO2) 2. Solid State Ionics 148: 467–473.

DOI: 10.1016/s0167-2738(02)00089-9

Google Scholar

[23] Winie T, Ramesh S, Arof AK (2009) Studies on the structure and transport properties of hexanoyl chitosan-based polymer electrolytes. Physica B: Condensed Matter, 404 (21): 4308 – 4311.

DOI: 10.1016/j.physb.2009.08.004

Google Scholar

[24] Anantha, PS, Hariharan K (2005) Physical and Ionic transport studies on poly (ethylene oxide) NaNO3 polymer electrolyte system. Solid State Ionics, 176 (1-2): 155 – 162.

DOI: 10.1016/j.ssi.2004.07.006

Google Scholar