Effects of Acid Modified SiO2 on Ionic Conductivity and Blend Properties of LiBF4 Doped PMMA/ENR 50 Electrolytes

Article Preview

Abstract:

Previously, it was found that the addition of SiO2 filler can improve the homogeneity and enhance the ionic conductivity of lithium tetrafluoroborate (LiBF4) doped polymethyl methacrylate/50 % epoxidized natural rubber (PMMA/ENR 50) blend from 6.21 x 10-7 Scm-1 to 5.26 x 10-6 Scm-1. Unfortunately, this SiO2 filler tend to agglomerates thus obstructing the smoothness in the transportation of lithium ion in the polymer blend matrix. This unruly phenomenon was due to the formation of hydrogen bonding between the oxygen atom of SiO2 and the hydrogen atom from the moisture. Therefore, in this study, this SiO2 filler was modified using hydrochloric acid (HCl) to reduce the formation of hydrogen bonding between SiO2 and moisture. It was found that the modification was able to reduce the hydrogen bond in SiO2 filler. The CHNS analysis shows that the percentage of hydrogen reduces as concentration of acid increased. This was further confirmed from the FT-IR analysis in which the peak corresponding to Si-OH was reduces meanwhile the peaks corresponding to Si-O-Si increases as HCl concentration increased. As a result, the homogeneity of the blends was further improved. However, the ionic conductivity of the system was found slightly reduce by few magnitudes. Temperature dependence ionic conductivity of LiBF4 doped PMMA/ENR 50 filled HCl-SiO2 electrolytes shows nonlinear trend indicates that the system not obeys Arrhenius equation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

187-193

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Deka, M., Kumar, A. (2010) Enhanced electrical and electrochemical properties of PMMA–clay nanocomposite gel polymer electrolytes. Electrochimica Acta, 55, 1836–1842.

DOI: 10.1016/j.electacta.2009.10.076

Google Scholar

[2] Osman, Z., Ghazali, M.I.M., Othman, L., Isa, K.B.M. (2012) AC ionic conductivity and DC polarization method of lithium ion transport in PMMA–LiBF4 gel polymer electrolytes. Results in Physics, 2, 1–4.

DOI: 10.1016/j.rinp.2011.12.001

Google Scholar

[3] Kufian, M.Z., Aziz, M.F., Shukur, M.F., Rahim, A.S., Ariffin, N.E., Shuhaimi, N.E.A., Majid, S.R., Yahya, R., Arof, A.K. (2012) PMMA–LiBOB gel electrolyte for application in lithium ion batteries. Solid State Ionics, 208, 36–42.

DOI: 10.1016/j.ssi.2011.11.032

Google Scholar

[4] Sivakumar, M., Subadevi, R., Rajendran, S., Wu, H. C, Wu, N.L. (2007) Compositional effect of PVdF–PEMA blend gel polymer electrolytes for lithium polymer batteries. European Polymer Journal, 43, 4466–4473.

DOI: 10.1016/j.eurpolymj.2007.08.001

Google Scholar

[5] Latif, F.A., Aziz, M., Katun, K., Ali, M.A.M., Yahya, M.Z. (2006) The role and impact of rubber in poly(methyl methacrylate)/lithium triflate electrolyte. Journal of Power Sources, 159, 1401–1404.

DOI: 10.1016/j.jpowsour.2005.12.007

Google Scholar

[6] Su'ait, M.S., Ahmad, A., Hamzah, H., Rahman, M.Y.A. (2011).

Google Scholar

[7] Sharil, F.M. Z, Latif, Famiza, A.L. (2013) SiO2 filler as interface modifier in PMMA/ENR 50 electrolytes. Advanced Materials Research, 812, 120-124.

DOI: 10.4028/www.scientific.net/amr.812.120

Google Scholar

[8] Kumar, K.K., Ravi, M., Pavani, Y., Bhavani, S. Sharma, A.K., Rao, V.V.R.N. (2012) Electrical conduction mechanism in NaCl complexed PEO/PVP polymer blend electrolytes. Journal of Non-Crystalline Solids, 358 (21), 3205-3211.

DOI: 10.1016/j.jnoncrysol.2012.08.022

Google Scholar

[9] Noriman, N. Z., Ismail, H. and Rashid, A. A. (2010).

Google Scholar

[10] Shanmukaraj, D., Wang, G.X., Murugan, R. Liu, H.K. (2008) Ionic conductivity and electrochemical stabilityof poly(methylmethacrylate)–poly(ethylene oxide) blend-ceramic fillers composites. Journal of Physics and Chemistry of Solids, 69, 243–248.

DOI: 10.1016/j.jpcs.2007.08.072

Google Scholar

[11] Bac, A., Ciosek, M., Bukat, M., Marczewski, M., Marczewska, H., Wieczorek, W. (2006).

Google Scholar

[12] Thakur, A. K, Hashmi, S.A. (2010) Polymer matrix–filler interaction mechanism for modified ion transport and glass transition temperature in the polymer electrolyte composites. Solid State Ionics, 181, 1270–1278.

DOI: 10.1016/j.ssi.2010.06.055

Google Scholar

[13] Zhang, S., Lee, J.Y., Hong, L. (2004) Visualization of particle distribution in composite polymer electrolyte systems. Journal of Power Sources, 126(1–2), 125-133.

DOI: 10.1016/j.jpowsour.2003.08.011

Google Scholar

[14] Halma, M., Bail, A., Wypych, F., Nakagaki, S. (2006) Catalytic activity of anionic iron(III) porphyrins immobilized on grafted disordered silica obtained from acidic leached chrysotile. Journal of Molecular Catalysis A: Chemical, 243(1), 44-51.

DOI: 10.1016/j.molcata.2005.08.019

Google Scholar

[15] Kim. M.T. (1997) Deposition behavior of hexamethydisiloxane films based on the FTIR analysis of Si–O–Si and Si–CH3 bonds. Thin Solid Films, 311(1–2), 157-163.

DOI: 10.1016/s0040-6090(97)00683-4

Google Scholar

[16] Cao, J., Wang, L., Shang, Y., Fang, M., Deng, L., Gao, J., Li, J. Chen, H., He, X. (2013) Dispersibility of nano-TiO2 on performance of composite polymer electrolytes for Li-ion batteries. Electrochimica Acta, 111, 674-679.

DOI: 10.1016/j.electacta.2013.08.048

Google Scholar

[17] Fan, L., Nana, C.W., Zhao, S. (2003) Effect of modified SiO2 on the properties of PEO-based polymer electrolytes. Solid State Ionics, 164(1–2), 81-86.

DOI: 10.1016/j.ssi.2003.08.004

Google Scholar

[18] Wang, Y.Y., Fan, F., Agapov, A.L., Saito, T., Yang, J., Yu, X., Hong, K., Mays, J., Sokolov, A.P. (2014) Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes. Polymer, 55(16), 4067-4076.

DOI: 10.1016/j.polymer.2014.06.085

Google Scholar

[19] Rajendran, S., Uma, T. (2000) Effect of ceramic oxide on PMMA based polymer electrolyte systems. Materials Letters, 45 (3–4), 191-196.

DOI: 10.1016/s0167-577x(00)00103-8

Google Scholar

[20] Rao, M, m Geng, X., Liao, Y., Hu, S., Li, W. (2012) Preparation and performance of gel polymer electrolyte based on electrospun polymer membrane and ionic liquid for lithium ion battery. Journal of Membrane Science, 399–400, 37-42.

DOI: 10.1016/j.memsci.2012.01.021

Google Scholar