Conductivity-Temperature Dependent Studies on MG49 Doped Lithium Triflate Salt

Article Preview

Abstract:

This paper reports on the conductivity-temperature studies of gel polymer electrolytes (GPEs) based on 49% poly (methyl methacrylate) grafted-natural rubber (MG49) doped with lithium triflate salt (LiTf) and plasticized with ethylene carbonate (EC). The GPE films are prepared by solution cast technique. The X-ray diffraction (XRD) studies reveal the polymer electrolyte systems are amorphous. AC impedance spectroscopy is carried out in the temperature range between 303 and 373 K. The magnitudes of conductivity observed are strongly dependent on salt concentration and temperature. The high ionic conductivity at elevated temperatures of GPE is attributed to the high ionic mobility of charge carriers. The ionic migration is seen to follow the VTF behavior and approaches to Arrhenius rule at high and low at temperature. Ionic conductivity relaxation appears to be a characteristic of the ionic polarization and the modulus formalism studies confirmed the GPEs in the present investigation are ionic conductors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

181-186

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.H. Liao, M.M. Rao, W.S. Li, L.T. Yang, B.K. Zhu, R. Xu, C.H. Fu, Fumed silica-doped poly(butyl methacrylate-styrene)-based gel polymer electrolyte for lithium ion battery. Journal of Membrane Science, 352 (2010) 95-99.

DOI: 10.1016/j.memsci.2010.01.064

Google Scholar

[2] Y. Kato, S. Yokoyama, H. Ikuta, Y. Uchimoto, M. Wakihara, Thermally stable polymer electrolyte plasticized with PEG-borate ester for lithium secondary battery. Electrochemistry Communications, 3 (2001) 128-130.

DOI: 10.1016/s1388-2481(01)00119-9

Google Scholar

[3] R.J. Latham, S.E. Rowlands, W.S. Schlindwein, Supercapacitors using polymer electrolytes based on poly(urethane). Solid State Ionics, 147 (2002) 243-248.

DOI: 10.1016/s0167-2738(02)00023-1

Google Scholar

[4] M. Mastragostino, C. Arbizzani, F. Soavi, Polymer-based supercapacitors. Journal of Power Sources, 97-98 (2001) 812-815.

DOI: 10.1016/s0378-7753(01)00613-9

Google Scholar

[5] D.E. Fenton, J.M. Parker, P.V. Wright, Complexes of alkali metal ions with poly(ethylene oxide). Polymer, 14 (1973) 589-589.

DOI: 10.1016/0032-3861(73)90146-8

Google Scholar

[6] S. Wang, K. Min, Solid polymer electrolytes of blends of polyurethane and polyether modified polysiloxane and their ionic conductivity. Polymer, 51 (2010) 2621-2628.

DOI: 10.1016/j.polymer.2010.04.038

Google Scholar

[7] S. S Hwang, C.G. Cho, H. Kim, Room temperature cross-linkable gel polymer electrolytes for lithium ion batteries by in situ cationic polymerization of divinyl ether. Electrochemistry Communications, 12 (2010) 916-919.

DOI: 10.1016/j.elecom.2010.04.020

Google Scholar

[8] F. Wu, T. Feng, Y. Bai, C. Wu, L. Ye, Z. Feng, Preparation and characterization of solid polymer electrolytes based on PHEMO and PVDF-HFP. Solid State Ionics, 180 (2009) 677-680.

DOI: 10.1016/j.ssi.2009.03.003

Google Scholar

[9] S. Rajendran, T. Uma, T. Mahalingam, Characterisation of plasticized PMMA based solid polymer electrolytes. Ionics, 5 (1999) 232-235.

DOI: 10.1007/bf02375845

Google Scholar

[10] S. Rajendran, M. Sivakumar, R. Subadevi, Investigations on the effect of various plasticizers in PVA-PMMA solid polymer blend electrolytes. Materials Letters, 58 (2004) 641-649.

DOI: 10.1016/s0167-577x(03)00585-8

Google Scholar

[11] R. Idris, M.D. Glasse, R.J. Latham, R. G, Linford, Polymer electrolytes based on modified natural rubber for use in rechargeable lithium batteries. Journal of Power Sources, 94 (2001) 206-211.

DOI: 10.1016/s0378-7753(00)00588-7

Google Scholar

[12] F. Latif, M. Aziz, N. Katun, A.M.M. Ali, M.Z.A. Yahya, The role and impact of rubber in poly(methyl methacrylate)/lithium triflate electrolyte. Journal of Power Sources, 159 (2006) 1401-1404.

DOI: 10.1016/j.jpowsour.2005.12.007

Google Scholar

[13] M. Sivakumar, R. Subadevi, S. Rajendran, N. –L. Wu, J. –Y. Lee, Electrochemical studies on [(1–x) PVA–xPMMA] solid polymer blend electrolyte complexed with LiBF4. Materials Chemistry and Physics, 97 (2006) 330-336.

DOI: 10.1016/j.matchemphys.2005.08.018

Google Scholar

[14] G. Hirankumar, S. Selvakarapadan, N. Kuwata, J. Kawamura, T. Hatton, Thermal, electrical and optical studies on the poly(vinyl alcohol) based polymer electrolytes. Journal of Power Sources, 144 (2005) 262-267.

DOI: 10.1016/j.jpowsour.2004.12.019

Google Scholar

[15] L.R.A.K. Bandara, M.A.K.L. Dissanayake, B.E. Mellander, Ionic conductivity of plasticized(PEO)-LiCF3SO3 electrolytes. Electrochimica Acta, 43 (1998) 1447-1451.

DOI: 10.1016/s0013-4686(97)10082-2

Google Scholar

[16] A.M.M. Ali, M.Z.A. Yahya, H. Bahron, R.H.Y. Subbah, M.K. Harun, I. Atan, Impedance studies on plasticized PMMA-LiX [X: CF3SO3-, N(CF3SO2)2-] polymer electrolytes. Materials Letters, 61 (2007) 2026-(2029).

DOI: 10.1016/j.matlet.2006.08.008

Google Scholar

[17] T. Uno, S. Kawaguchi, M. Kubo, T. Itoh, Ionic conductivity and thermal property of solid hybrid polymer electrolyte composed of oligo(ethylene oxide) unit and butyrolactone unit. Journal of Power Sources, 178 (2008) 716-722.

DOI: 10.1016/j.jpowsour.2007.11.088

Google Scholar

[18] J.R. Nair, C. Gerbaldi, M. Destro, R. Bongiovanni, N. Penazzi, Methacrylic-based solid polymer electrolyte membranes for lithium-based batteries by a rapid UV-curing process. Reactive and Functional Polymers, 71 (2011) 409-416.

DOI: 10.1016/j.reactfunctpolym.2010.12.007

Google Scholar

[19] P. Basak, S. V Manorama, Poly(ethylene oxide)-polyurethane/poly(acrylonitrile) semi-interpenetrating polymer networks for solid polymer electrolytes: vibrational spectroscopic studies in support of electrical behavior. European Polymer Journal, 40 (2004).

DOI: 10.1016/j.eurpolymj.2004.01.013

Google Scholar

[20] A.L. Saroj, R.K. Singh, Thermal, dielectric and conductivity studies on PVA/Ionic liquid [EMIM][EtSO4] based polymer electrolytes. Journal of Physics and Chemistry of Solids, 73 (2012) 162-168.

DOI: 10.1016/j.jpcs.2011.11.012

Google Scholar