Effects of Bu3MeNTf2N Ionic Liquid Addition on Conductivity of PVC-NH4Tf Polymer Electrolytes

Article Preview

Abstract:

Solid polymer electrolytes (SPEs) with poly (vinyl) chloride (PVC) doped with a fixed amount of ammonium trifluoro methane sulfonate (NH4Tf) and with varying concentrations of ionic liquid butyltrimethyl ammonium bis (trifluoromethyl sulfonyl) imide (Bu3MeNTf2N) were synthesised via solution cast technique. PVC-NH4Tf-Bu3MeNTf2N-based SPEs with 15 weight % Bu3MeNTf2N exhibit conductivity of 1.56 x 10-4 Scm-1 at room temperature. The ionic conductivity is attributed to the dissociation of NH4Tf facilitated by Bu3MeNTf2N. Results of XRD indicate that the most amorphous film has the highest conductivity and this is corroborated by the results of DSC. FTIR spectra revealed that Bu3MeNTf2N has weak interaction suggesting that it acts mainly as a lubricant to facilitate polymer segmental motion.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

194-199

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F.M. Gray, Polymer Electrolytes, The Royal Society of Chemistry, Cambridge, (1997).

Google Scholar

[2] J.E. Weston, B.C.H. Steele, Solid State Ionics 7 (1987) 75-79.

Google Scholar

[3] Z. Whang, B. Huang, H. Huang, L. Chen, R. Xue, F. Wang, Solid State Ionics 85 (1996) 143-148.

Google Scholar

[4] S.R. Starkey, R. Frech, Electrochimica Acta 42 (93) (1997) 471-474.

Google Scholar

[5] R.H.Y. Subban, A.K. Arof, European Polymer Journal 40 (2004) 1841-1847.

Google Scholar

[6] N. Srivastava, S. Chandra, European Polymer Journal 36 (2000) 421-423.

Google Scholar

[7] H. Cheng, C. Zhu, B. Huang, M. Lu, Y. Yang, Electrochimica Acta 52 (2007) 5789–5794.

Google Scholar

[8] S.F. Mohammad, N. Zainal, S. Ibrahim, N.S. Mohamed, Int. J. of Electrochem. Sci. 8 (2013) 6145-6153.

Google Scholar

[9] N. Khairul Anwar, R.H.Y. Subban, N. S. Mohamed, Materials 5 (2012) 2609-2620.

Google Scholar

[10] H.P. S. Missan, B.S. Lalia, K. Karan, A. Maxwell, Materials Science and Engineering B 175 (2010) 143-149.

Google Scholar

[11] P.K. Singh, K.W. Kim, H. W Rhee, Synthetic Metals 159 (2009) 1538-1541.

Google Scholar

[12] D. Kumar, S.A. Hashmi, Solid State Ionics 181 (2010) 416-423.

Google Scholar

[13] A.S. Fischer, M.B. Khalid, M. Widstrom, P. Kofinas, Journal of Power Sources 196 (2011) 9767-9773.

Google Scholar

[14] J.H. Shin, W.A. Henderson, S.S.P.P. Prosini, S. Passerini, Journal of Power Sources 156 (2006) 560-566.

Google Scholar

[15] A.M. Smith, K.R.J. Lovelock, N.N. Gotsvani, P. Licence, A. Dolan, T. Welton, S. Perkin, The Journal of Physical Chemistry Letters 4 (2013) 378-382.

Google Scholar

[16] A.L. Saroj, R.K. Singh, S. Chandra, Materials Science and Engineering B 178 (2013) : 231-238.

Google Scholar

[17] S. Kim, S.J. Park, Electrochimica Acta 54 (2009) 3775-3780.

Google Scholar

[18] W. Huang, R. Frech, Polymer 35(20) ( 1994) 235-242.

Google Scholar

[19] L.C. Wen, Ph. d Thesis, Investigation on lithium ion conductivity and characterization of PMMA–PVC based polymer electrolytes incorporating ionic liquid and nano-filler, Universiti Tunku Abdul Rahman, 2011, pp.228-237.

Google Scholar

[20] R. Baskaran, S. Selvasekarapandian, N. Kuwata, J. Kawamura & T. Hattori, Solid State Ionics 177 (2006) 2679–2682.

DOI: 10.1016/j.ssi.2006.04.013

Google Scholar