Effect of Sintering Temperature on Structural, Electrical and Magnetic Properties of La0.7Sr0.3MnO3

Article Preview

Abstract:

The influence of sintering temperature on structural, microstructure and transports properties of La0.7Sr0.3MnO3 (LSMO) prepared via sol-gel techniques is introduced. Sintering temperature of LSMO varied from 650°C to 950°C with the interval of 100°C. All samples show single phase structure with hexagonal setting. Refinement was done on the XRD data obtained. Microstructure investigation displayed an increment in average grain size of LSMO due to the grain growth promotion as the sintering temperature increased. Magnetization of all samples was enhanced by the grain growth promotion. Resistivity experienced a reduction trend and Tp shifted to higher temperature as the sintering temperature increased. All sintered LSMO exhibit LFMR effect at low applied field and low temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

283-288

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh, L.H. Chen, Science 264 (1994) 413-415.

DOI: 10.1126/science.264.5157.413

Google Scholar

[2] R.V. Helmolt, J. Wecker, B. Holzapfel, L. Schultz, K. Samwer, Phys. Rev. Lett. 71 (1993) 2331-2333.

Google Scholar

[3] M. Navasery, S.A. Halim, N. Soltani, G. Bahmanrokh, A. Dehzangi, M. Erfani H, A. Kamalianfar, S.K. Chen, K.Y. Pan, Int. J. Electrochem. 8 (2013) 467-476.

DOI: 10.1016/s1452-3981(23)14034-x

Google Scholar

[4] A.M.H. Gosnet, J.P. Renard, J. Phys. D: Appl. Phys. 36 (2003) R127-150.

Google Scholar

[5] J. Mera, M. Mera, C. Cordoba, O. Paredes, O. Morán, J. Supercond. Nov. Magn. 26 (2013) 2553-2556.

DOI: 10.1007/s10948-012-1570-9

Google Scholar

[6] Y.B. Zhang, S. Li, C.Q. Sun, S. Widjaja, P. Hing, J. Mater. Process. Tech. 122 (2002) 266-271.

Google Scholar

[7] G. Venkataiah, Y.K. Lakshimi, P.V. Reddy, J. Magn. Magn. Mater. 285 (2005) 343-352.

Google Scholar

[8] L.W. Lei, Z.Y. Fu, J.Y. Zhang, Mater. Lett. 60 (2006) 970-973.

Google Scholar

[9] A. Gaur, G.D. Varma, J. Phys.: Condens. Matter 18 (2006) 8837-8846.

Google Scholar

[10] C. Umesh, Y. Kamlesh, G. Anurag, G.D. Varma, J. Rare Earth. 28 (2010) 760-764.

Google Scholar

[11] L.M. Wang, J.H. Lai, J.L. Wu, J. Appl. Phys. 102 (2007) 023915(1-7).

Google Scholar

[12] P.K. Siwach, U. K Goutam, P. Srivasta, H.K. Singh, R.S. Tiwari, O.N. Srivastava, J. Phys. D.: Appl. Phys. 39 (2006) 14-20.

Google Scholar

[13] C.N.R. Rao, R. Nagarajan, R. Vijayaragjavan, Supecond. Sci. Technol. 6 (1993) 1-22.

Google Scholar

[14] K.Y. Pan, S.A. Halim, K.P. Lim, W.M. Daud, S.K. Chen, J. Supercond. Nov. Magn. 25 (2012) 1177-1183.

Google Scholar

[15] B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, second edn., Wiley-IEEE Press, New York, (2008).

Google Scholar

[16] K.P. Lim, S.W. Ng, S.A. Halim, S.K. Chen, J.K. Wong, Am. J. Appl. Sci. 6 (2009) 1153-1157.

Google Scholar