Influence of Molar Ratio of Citric Acid to Metal Ions on Structure, Microstructure and Electrical Transport Properties on Nanosized La0.85Na0.15MnO3

Article Preview

Abstract:

In this paper, nanosized La0.85Na0.15MnO3 (LNMO) has been synthesized via sol-gel method by involving two major steps, first the complexation of citric acid (CA) with metal ions (MI) and second the polyesterification between CA and ethylene glycol (EG). The effect of molar ratio CA:MI varying from 2-4 on structure, microstructure and electrical transport properties of LNMO have been investigated by constant the amount of EG. All samples show single perovskite phase with hexagonal structure and space group R3c after sintering at 800°C for 10h. Sample of molar ratio 2.5 is observed to possess smallest grain sizes which yield high resistivity value compared with others, is suggested to originate from the increase of tunneling barriers (grain boundaries). The large low field magnetoresistance (LFMR) of about ~ -16% at 0.1T and low temperature confirmed the important role of grain boundaries in the nanosized LNMO.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

261-266

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. P. Ramirez, Colossal magnetoresistance, J. Phys.: Condens. Matter 9 (1997) 8171.

Google Scholar

[2] P. K. Siwach, H. K. Singh, and O. N. Srivastava, Low field magnetotransport in manganites, J. Phys.: Condens. Matter 20 (2008) 273201.

DOI: 10.1088/0953-8984/20/27/273201

Google Scholar

[3] J. M. Daughton, GMR applications, J. Magn. Magn. Mater. 192 (1999) 334.

Google Scholar

[4] A. M. Haghiri-Gosnet and J. P. Renard, CMR manganites: Physics, thin films and devices, J. Phys. D: Appl. Phys. 36 (2003) R127.

DOI: 10.1088/0022-3727/36/8/201

Google Scholar

[5] L. M. Rodriguez-Martinez and J. P. Attfield, Structural effects of cation size variance in magnetoresistive manganese oxide perovskite, Chem. Matter. 11 (1999) 1504.

DOI: 10.1021/cm980759y

Google Scholar

[6] P. Kameli, H. Salamati, and A. Aezami, Influence of grain size on magnetic and transport properties of polycrystalline La0. 8Sr0. 2MnO3 manganites, J. Alloys Compounds 450 (2008) 7.

DOI: 10.1016/j.jallcom.2006.10.078

Google Scholar

[7] K. Y. Pan, S. A. Halim, K. P. Lim, W. M. W. Y. Daud, S. K. Chen and M. Navasery, Microstructure, electrical and magnetic properties of polycrystalline La0. 85K0. 15MnO3 manganites prepared by different synthesis routes, J. Mater Sci: Mater Electron 24 (2013).

DOI: 10.1007/s10854-012-1025-x

Google Scholar

[8] P. Dey and T. K. Nath, Enhanced grain surface effect on the temperature-dependent behavior of spin-polarized tunneling magnetoresistance of nanometeric manganites, Appl. Phys. Lett. 87 (2005) 162501.

DOI: 10.1063/1.2089179

Google Scholar

[9] T. Zhu, B. G. Shen, J. R. Sun, H. W. Zhao, and W. S. Zhan, Surface spin-glass behavior in La2/3Sr1/3MnO3 nanoparticles, Appl. Phys. Lett. 78 (2001) 3863.

DOI: 10.1063/1.1379597

Google Scholar

[10] M. Kakihana, Sol-gel preparation of high temperature superconducting oxides, J. Sol-Gel Sci. Technol. 6 (1996) 7.

DOI: 10.1007/bf00402588

Google Scholar

[11] L. D. Conceicao, N. F. P. Ribeiro, and M. M. V. M. Souza, Synthesis of La1-xSrxMnO3 powders by polymerizable complex method: Evaluation of structural, morphological, and electrical properties, Ceramic International 37 (2011) 2229.

DOI: 10.1016/j.ceramint.2011.03.069

Google Scholar