Thermal and Structural Properties of Erbium/Neodymium Co-Doped Lithium-Magnesium-Tellurite Glass

Article Preview

Abstract:

Detailed characterizations of inorganic glasses via optimized rare earth doping/co-doping are challenging. Tellurite glasses with composition (78-x)TeO2-10Li2O-10MgO-2Nd2O3-xEr2O3, (where x = 0.4 to 2.0 mol%) are prepared by melt-quenching technique. The effects of Er2O3 concentration on the thermal stability and structural properties are examined. The X-ray diffraction pattern confirms the glassy nature of all samples. The temperature of glass transition (Tg), crystallization (Tc), melting (Tm) and the difference (Tc-Tg) are determined by differential thermal analyser (DTA). The values of Tc, Tg and Tm are found to vary in the range of 419-430 °C, 300-345 °C and 885-890 °C, respectively. The glass sample with 0.4 mol% Er2O3 shows highest thermal stability. The FTIR spectra measured in the range of 400 - 4000 cm1 exhibits two major absorption peaks around 1600 - 3600 cm1 and 900 - 1200 cm1 assigned to the stretching vibrational mode of OH and Te-OH respectively. Improvements in the optical and thermal properties due to co-doping may be useful for the development of tellurite glass based photonics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

466-470

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. El-Mallawany, Tellurite Glass Handbook: Physical Properties and Data, CRC Press LLC (2002).

Google Scholar

[2] R. El-Mallawany, Structural Interpretations on Tellurite Glasses, Mater. Chem. Phys. 63 (2000) 109-115.

DOI: 10.1016/s0254-0584(99)00196-0

Google Scholar

[3] G. Eranna, Metal Oxide Nanostructures as Gas Sensing Devices, CRC Press (2011).

Google Scholar

[4] G.D. Khattak, A. Mekki, L.E. Wenger, Local structure and redox state of copper in tellurite glasses, J. Non-Cryst. Sol. 337 (2004) 174-181.

DOI: 10.1016/j.jnoncrysol.2003.08.088

Google Scholar

[5] R. Raffaella, G. Karl, W. Mario, B. Marco, S. Adolfo, David Ajò, Optical spectroscopy of lanthanide ions in ZnO-TeO2 glasses, Spectrochim. Acta Part A 57 (2001) 2009-(2017).

DOI: 10.1016/s1386-1425(01)00474-7

Google Scholar

[6] Y. El-Sayed, D. Kamel, M. Ramzi, Rüssel, Thermal stability and UV-Vis NIR spectroscopy of a new erbium-doped fluorotellurite glass, Philos. Mag. (2011) 1-13, iFirst.

DOI: 10.1080/14786435.2011.634852

Google Scholar

[7] F.M. John, W. Angus, Applied Dental Materials, John Wiley & Sons (2009) 108.

Google Scholar

[8] S.W. Yung, H.J. Lin, Y.Y. Lin, R.K. Brow, Y.S. Lai, J.S. Horng, T. Zhang, Concentration effect of Yb3+ on the thermal and optical properties of Er3+/Yb3+- codoped ZnF2-Al2O3-P2O5 glasses, Mater. Chem. Phys. 117 (2009) 29-34.

DOI: 10.1016/j.matchemphys.2008.11.060

Google Scholar

[9] I. Jlassi, H. Elhouichet, M. Ferid, Thermal and optical properties of tellurite glasses doped erbium, J. Mater Sci. 46 (2011) 806-812.

DOI: 10.1007/s10853-010-4820-x

Google Scholar

[10] Qiu-Hua, G. Yuan, X. Tie-Feng, S. Xiang, Investigation of thermal stability and spectroscopic properties in Er3+/Yb3+- codoped TeO2-Li2O-B2O3-GeO2 glasses, Spectrochim. Acta Part A (2005) 1939-(1943).

DOI: 10.1016/j.saa.2004.07.026

Google Scholar

[11] X. Kai, Y. Zhongmin, Thermal stability and optical transitions of Er3+/ Yb3+-codoped barium gallogermanate glass, Opt. Mater. 29 (2007) 1475-1480.

DOI: 10.1016/j.optmat.2006.07.009

Google Scholar

[12] P.P. Gayathri, K. Sadhana, M.V. Chandra, Optical physical and structural studies of boro-zinc tellurite glasses, Physica B 406 (2011) 1242-1247.

DOI: 10.1016/j.physb.2011.01.006

Google Scholar

[13] H. Bürger, K. Kneipp, H. Hobert, W. Vogel, Glass formation, properties and structure of glasses in the TeO2-ZnO system, J. Non-Cryst Sol. 151 (1992) 134-142.

DOI: 10.1016/0022-3093(92)90020-k

Google Scholar

[14] K. Sulhadi, M.R. Sahar, M.S. Rohani, R. Arifin, Thermal stability and structural studies in the TeO2-ZnO-MgO-Li2O-Er2O4 glass system, Solids State Sci. Tech. 15 (2007) 116-121.

Google Scholar

[15] L.F. Ray, R.B. Jagannadha, An application of near-infrared and mid-infrared spectroscopy to the study of selected tellurite minerals: xocomecatlite, tlapallite and rodalquilarite, Transition Met. Chem. 34 (2009) 23–32.

DOI: 10.1007/s11243-008-9153-0

Google Scholar

[16] A. Ioan, L. Simona, R. Dorina, Structural investigation of xMnO. (100x)[As2O3. PbO] glass system by FT-IR and Raman spectroscopies, Solid States Sci. 10 (2008) 1384-1386.

DOI: 10.1016/j.solidstatesciences.2007.12.015

Google Scholar

[17] B.V.R. Chowdari, K.P. Pramoda, Studies on Ag2O. MxOy. TeO2 (MxOy =WO3, MoO3, P2O5 and B2O3) ionic conducting glasses, Solid State Ionics 113-115 (1998) 665-675.

DOI: 10.1016/s0167-2738(98)00393-2

Google Scholar

[18] M.R. Sahar, K. Sulhadi, M.S. Rohani, Spectroscopic studies of TeO2–ZnO–Er2O3 glass system, J. Mater. Sci. 42 (2007) 824–827.

DOI: 10.1007/s10853-006-0095-7

Google Scholar

[19] L. Guihua, C. Qiuping, X. Jianjun, Thermal and optical properties of new fluorotellurite glasses for photonics application, Proc. SPIE-Digital Lib. 6998 (2008) 1-8.

Google Scholar

[20] M.D. O'Donnell, C.A. Miller, D. Fumiss, V.K. Tikhomirov, A.B. Seddon, Fluorotellurite glasses with improved mid-infrared transmission, J. Non-Cryst. Sol. 331 (2003) 48-57.

DOI: 10.1016/j.jnoncrysol.2003.08.081

Google Scholar

[21] T. Setsuhisa, F. Xian, H. Teiichi, Hydroxyl group in erbium-doped germoanotellurite glasses, J. Non-Cryst. Sol. 281 (2001) 48-54.

Google Scholar