Density Functional Theory (DFT) Calculation of Band Structure of Kesterite

Article Preview

Abstract:

The kesterite, Cu2ZnSnS4 has a big potential as a future solar material in replacing current material. Although the kesterite and copper indium gallium selenide, CIGS has almost same structure but the constituent elements of kesterite are earth-abundance, cheaper and non-toxic. The chalcogen elements existed inside the kesterite compound are selenium and sulphur, Cu2ZnSnSe4 / Cu2ZnSnS4. Therefore, the structural flexibility of kesterite opens up an avenue to develop light-absorber material with suitable properties and applications. The density functional theory (DFT) has been used to calculate the total energy of Kesterite developed from Material Studio - CASTEP. The general gradient approximation (GGA) has been choosing to treat the exchange-correlation. The structure of kesterite has been developed by determining its space group, I4 and Pc and its coordination of each atom. The previous calculated shown that the energy of its band gap is around 1.0-1.5 eV.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

491-495

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Siebentritt, Why are kesterite solar cells not 20% efficient?, Thin Solid Films. 535 (2013) 1-4.

DOI: 10.1016/j.tsf.2012.12.089

Google Scholar

[2] S. R. Hall, J. T. Szymanski and J. M. Stewart, Kesterite, Cu2(Zn, Fe)SnS4 and stannite, Cu2(Fe, Zn)SnS4 structurally similar but distinct minerals, The Canadian Mineralogist 16 (1978) 131-137.

DOI: 10.1063/1.4862030

Google Scholar

[3] S. Schorr, The crystal structure of kesterite type compounds: A neutron and X-ray diffraction study, Solar Energy Materials & Solar Cells. 95 (2011) 1482-1488.

DOI: 10.1016/j.solmat.2011.01.002

Google Scholar

[4] Zhao, Z., Ma, C., Cao, Y., Yi, J., He, X., Qiu, J., Electronic structure and optical properties of wurtzite-kesterite Cu2ZnSnS4. Physics Letters A377 (2012) 417-422.

DOI: 10.1016/j.physleta.2012.11.057

Google Scholar

[5] S. Siebentritt and S. Schorr. Kesterites—a challenging material for solar cells, Progress in Photovoltaics: Research and Applications. 20 (2012) 512-519.

DOI: 10.1002/pip.2156

Google Scholar

[6] S. S. Mali, B. M. Patil, C. A. Betty, P. N. Bhosale, Y. W. Oh, S. R. Jadkar, R. S. Devan, Y. -R. Ma, P. S. Patil, Novel synthesis of kesterite Cu2ZnSnS4 nanoflakes by successive ionic layer adsorption and reaction technique: Characterization and application, Electrochimica Acta. 66 (2012).

DOI: 10.1016/j.electacta.2012.01.079

Google Scholar

[7] S. S. Swami, A. Kumar, V. Dutta, Deposition of Kesterite Cu2ZnSnS4(CZTS) Thin Films by Spin Coating Technique for Solar Cell Application, Energy Procedia 33 (2013) 198-202.

DOI: 10.1016/j.egypro.2013.05.058

Google Scholar

[8] M. Meng, L. Wan, P. Zou, S. Miao, J. Xu, Cu2ZnSnSe4 thin films prepared by selenization of one-step electrochemically deposited Cu-Zn-Sn-Se precursors, Applied Surface Science. 273 (2013) 613–616.

DOI: 10.1016/j.apsusc.2013.02.088

Google Scholar

[9] S. Schorr, M. Tovar, H. J. Hoebler, H. W. Schock, Structure and phase relations in the 2(CuInS2)–Cu2ZnSnS4 solid solution system. Thin Solid Films, 517(7) (2009) 2508-2510.

DOI: 10.1016/j.tsf.2008.11.032

Google Scholar

[10] X. He, H. Shen, First-principles study of elastic and thermo-physical properties of kesterite-type Cu2ZnSnS4, Physica B: Condensed Matter. 406(24) (2011) 4604-4607.

DOI: 10.1016/j.physb.2011.09.035

Google Scholar

[11] D. Huang, C. Persson, Band gap change induced by defect complexes in Cu2ZnSnS4, Thin Solid Films 535, (2013) 265–269.

DOI: 10.1016/j.tsf.2012.10.030

Google Scholar

[12] H. Zhao, C. Persson, Optical properties of Cu(In, Ga)Se2and Cu2ZnSn(S, Se)4, Thin Solid Films. 519(21), (2011) 7508-7512.

DOI: 10.1016/j.tsf.2010.12.217

Google Scholar

[13] S. Chen, J. H. Yang, X. G. Gong, A. Walsh, S. H. Wei, Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4, Physical Review B. 81(24) (2010) 245204.

Google Scholar

[14] S. Chen, A. Walsh, Y. Luo, J. H. Yang, X. G. Gong, S. H. Wei, Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors, Physical Review B. 82(19) (2010) 195203.

DOI: 10.1103/physrevb.82.195203

Google Scholar

[15] S. Chen, A. Walsh, J. H. Yang, X. G. Gong, L. Sun, P. X. Yang, J. H. Chu, S. H. Wei, Compositional dependence of structural and electronic properties of Cu2ZnSn(S, Se)4 alloys for thin film solar cells. Physical Review B, 83(12) (2011) 125201.

Google Scholar

[16] T. A. Oliveira, J. Coutinho, V. J. B. Torres, Born effective charges of Cu2ZnSnS4 quaternary compound: First principles calculations, Thin Solid Films. 535 (2012) 311 – 313.

DOI: 10.1016/j.tsf.2012.10.115

Google Scholar

[17] S. Botti, D. Kammerlander, M. A. Marques, Band structures of Cu2ZnSnS4 and Cu2ZnSnSe4 from many-body methods, Applied Physics Letters. 98 (2011) 241915.

DOI: 10.1063/1.3600060

Google Scholar

[18] N. B. M. Amiri, A. Postnikov, Secondary phase Cu2SnSe3 vs. kesterite Cu2ZnSnSe4: Similarities and differences in lattice vibration modes, Journal of Applied Physics. 112 (2012) 033719.

DOI: 10.1063/1.4745894

Google Scholar

[19] T. Maeda, S. Nakamura, T. Wada, First principles calculations of defect formation in in-free photovoltaic semiconductors Cu2ZnSnS4 and Cu2ZnSnSe4. Japanese Journal of Applied Physics, 50 (2011) 04DP07.

DOI: 10.1143/jjap.50.04dp07

Google Scholar

[20] S. Chen, A. Walsh, X. G. Gong, S. H. Wei, Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth‐Abundant Solar Cell Absorbers. Advanced Materials. 25 (2013) 1522–1539.

DOI: 10.1002/adma.201203146

Google Scholar

[21] A. Walsh, S. Chen, S. H. Wei, X. G. Gong, Kesterite Thin‐Film Solar Cells: Advances in Materials Modelling of Cu2ZnSnS4, Advanced Energy Materials. 2(4) (2012) 400-409.

DOI: 10.1002/aenm.201100630

Google Scholar

[22] N. A. Zabidi, A. N. Rosli, H. A. Kassim, K. N. Shrivastava. Density Functional Theory Adsorption of Atoms on Cytosine, Malaysian Journal of Science, 29(1) (2010) 64-72.

DOI: 10.22452/mjs.vol29no1.10

Google Scholar

[23] A. N. Rosli, H. A. Kassim, K. N. Shrivastava, DFT Calculation of Vibrations in the Clusters of Zinc and Oxygen Atoms, Sains Malaysiana. 42(5) (2013) 649-654.

Google Scholar

[24] A. N. Rosli, H. A. Kassim, K. N. Shrivastava, Clusters of GaAs Prepared by Quantum Mechanical DFT and the Nanowire Raman Spectra, Sains Malaysiana. 42(12) (2013) 1811 – 1814.

Google Scholar