Effect of the Ge Mole Fraction on the Electrical Characteristics of Single and Dual Channel Vertical Strained SiGe Impact Ionization MOSFET (VESIMOS)

Article Preview

Abstract:

The effect of the Ge mole fraction in a Si1-xGex on single and dual channel Vertical Strained SiGe Impact Ionization MOSFET was successfully analyzed. It is found that the threshold voltage, breakdown voltage and sub-threshold slope of the devices was affected by the presence of the Germanium. A better performance in sub-threshold voltage of the devices was obtained for dual channel VESIMOS compared to single channel VESIMOS with a suitable amount of Germanium. Germanium has high and symmetric impact ionization rates to ensure the transition from OFF state to ON state is abrupt. With the appearance of the SiGe layer in the devices, has an advantage of the mobility enhancement of carriers in the devices operation. With the improvement of the Ge composition, it could transform VESIMOS into a new paradigm of devices which applicable to nanoelectronics with better electrical characteristics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

496-501

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Xiangdong Chen, Kou-Chen Liu, Qiqing Christine Ouyang, Sankaran Kartik Jayanaran, Sanjay Kumar Banerjee, Hole and Electron Mobility Enhancement in Strained SiGe Vertical MOSFETs, IEEE Trans Electron Dev, vol 48(9), 2001, p.1975-(1980).

DOI: 10.1109/16.944185

Google Scholar

[2] Chan Bun Seng, Mohd Zuhir H., Ismail Saad, Low Power High Performances Analysis of Impact Ionization MOSFET (IMOS) Device, Seminar on Science & Technology 2012, pp.71-77.

Google Scholar

[3] International Roadmap Committee. The International Technology Roadmap for Semiconductors. <public. itrs. net>.

Google Scholar

[4] Khakifirooz A, Antoniadis DA, MOSFET Performance Scaling – Part I: Historical Trends., IEEE Trans Electron Dev, vol 55, 2008, p.1391 – 1400.

DOI: 10.1109/ted.2008.921017

Google Scholar

[5] Khakifirooz A, Antoniadis DA, MOSFET Performance Scaling – Part II: Future Directions, IEEE Trans Electron Dev, vol 55, 2008, p.1401 – 1408.

DOI: 10.1109/ted.2008.921026

Google Scholar

[6] Gopalakrishnan K, Griffin PB, Plummer J, I-MOS: a novel semiconductor device with a subthreshold slope lower than kT/q, International Electron Device Meeting, IEDM, 2002, p.289 – 292.

DOI: 10.1109/iedm.2002.1175835

Google Scholar

[7] Gopalakrishnan K, Griffin PB, Plummer JD, Impact Ionization MOS (I-MOS) – Part I: Device and Circuit Simulations, IEEE Trans Electron Dev, vol 52(1), 2005, 69 – 76.

DOI: 10.1109/ted.2004.841344

Google Scholar

[8] Gopalakrishnan K, Woo R, Jungemann C, Griffin PB, Plummer JD, Impact Ionization MOS (I-MOS) – Part II: Experimental Results, IEEE Trans Electron Dev, Vol 52(1), 2005, p.77 – 84.

DOI: 10.1109/ted.2004.841345

Google Scholar

[9] Choi WY, Song JY, Lee JD, Park YJ, Park B-G, 100n-m n-/p- channel IMOS using a novel self-aligned structure., IEEE Trans Electron Dev, vol 26(4), 2005, p.261 – 263.

DOI: 10.1109/led.2005.844695

Google Scholar

[10] Choi WY, Song JY, Lee JD, Park YJ, Park B-G, 70-nm Impact Ionization Metal-Oxide-Semiconductor (I-MOS) devices Integrated with Tunneling Field Effect Transistors (TFETs)., International Electron Device Meeting, IEDM, 2005, p.955 – 958.

DOI: 10.1109/iedm.2005.1609519

Google Scholar

[11] Choi WY, Effect of Device Parameters on the Breakdown voltage of Impact Ionization metal – Oxide – Semiconductor devices., Jpn J Appl Phys, vol 48, (2009).

DOI: 10.1143/jjap.48.040203

Google Scholar

[12] Ismail Saad, Divya Pogaku, Abu Bakar AR, Mohd Zuhir H, N. Bolong, Khairul A. M, Bablu Ghosh, Razali Ismail, U. Hashim, Enhanced Performance Analysis of Vertical Strained SiGe Impact Ionization MOSFET (VESIMOS), IEEE Semiconductor Electronics, ICSE2012, 2012, p.177.

DOI: 10.1109/smelec.2012.6417118

Google Scholar

[13] Thanh Viet Dinh, Rainer Kraus, Christoph Jungemann, Investigation of the Performance of Strained – SiGe Vertical IMOS-Transistor, IEEE, (2009).

DOI: 10.1109/essderc.2009.5331537

Google Scholar

[14] Thanh Viet Dinh, Christoph Jungemann, Impaact Ionization Rates for Strained Si and SiGe, Solid State Electronics, vol 53, 2009, p.1318 – 1324.

DOI: 10.1016/j.sse.2009.09.013

Google Scholar

[15] K.S.K. Kwa, S. Chattopadhyay, S.H. Olsen, L.S. Driscoll and A.G. O' Neill, Optimisation of Channel Thickness in Strained Si/SiGe MOSFETs, IEEE, 2003, p.501 – 504.

DOI: 10.1109/essderc.2003.1256923

Google Scholar

[16] K. Rim, L. Shi, K. Chan, J. Ott, J. Chu, D. Boyd, K. Jenkins, D. Lacey, P. M Mooney, M. Cobb, N. Klymko, F. Jamin, S. Koester, B.H. Lee, M. Gribelyuk, T. Kanarsky, Strained Si for Sub – 100 nm MOSFET, Jyhoriba.

DOI: 10.1109/vlsit.2002.1015406

Google Scholar

[17] Hakkee Jung, The Analysis of Breakdown Voltage for the Double-Gate MOSFET using the Gaussian Doping Distribution, Journal of Information and Communication Convergence Engineering, JICCE, Vol 10(2), 2012, p.200 – 204.

DOI: 10.6109/jicce.2012.10.2.200

Google Scholar

[18] Atlas and Athena User Manual Device and Process Simulation Software, Silvaco International, (2005).

Google Scholar

[19] Abelein U, Assmuth A, Iskra P, Schindler M, Sulima T, Eisele I, Doping Profile Dependence of the Vertical Impact Ionization MOSFETs (IMOS) Performance, Solid State Electronics, Vol 51, 2007, PP. 1405 – 1411.

DOI: 10.1016/j.sse.2007.06.017

Google Scholar

[20] Scheinert S., Paasch G, Kittler M., Nuernbergk D., Mau H., Schwiers F., Requirements and Restrictions in Optimizing Homogenous and Planar Doped Barrier Vertical MOSFETs, International Caracas Conference on Devices, Circuits and Systems, ICCDCS, (1998).

DOI: 10.1109/iccdcs.1998.705805

Google Scholar

[21] Minjoo L. Lee, Eugene A. Fitzgerald, Optimized Strained Si/ Strained Ge Dual Channel Heterostructures for High Mobility P- and N- MOSFETs, International Electron Device Meeting, IEDM, 2003, p.429 – 432.

DOI: 10.1109/iedm.2003.1269314

Google Scholar

[22] Selberherr S. m, Analysis and Simulation of Semiconductor Devices, Springer – Verlag, Wien-New York, (1984).

Google Scholar

[23] Tarun Vir Singh, M. Jagadesh Kumar, Effect of the Ge Mole Fraction on the Formation of a Conduction Path in Cylindrical Strained Silicon on SiGe MOSFETs, Superlattices and Microstructures, Vol 44, 2008, p.79 – 85.

DOI: 10.1016/j.spmi.2008.02.007

Google Scholar

[24] Zoolfakar A. S and Ahmad A. Holes Mobility Enhancement Using Strained Silicon, SiGe Technology, International Colloquium on Signal Processing & Its Applications (CSPA), IEEE, 2009, p.346 – 349.

DOI: 10.1109/cspa.2009.5069248

Google Scholar

[25] Jongwan Jung, Shaofeng Yu, Minjoo L. Lee, Judy L. Hoyt, Eugene A. Fitzgerald, Dimitri A. Antoniadis, Mobility Enhancement in Dual Channel P-MOSFETs, IEEE Trans Electron Dev, Vol 51 (9), 2004, p.1424 – 1431.

DOI: 10.1109/ted.2004.833588

Google Scholar