[1]
Huggins, R. (2000). Supercapacitors and electrochemical pulse sources. Solid State Ionics, 134(1-2), 179–195.
DOI: 10.1016/s0167-2738(00)00725-6
Google Scholar
[2]
Niu, C., Sichel, E. K., Hoch, R., Moy, D., & Tennent, H. (1997). High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett., 70(11), 1480.
DOI: 10.1063/1.118568
Google Scholar
[3]
Halama, A., Szubzda, B., & Pasciak, G. (2010). Carbon aerogels as electrode material for electrical double layer supercapacitors—Synthesis and properties. Electrochim. Acta, 55(25), 7501–7505.
DOI: 10.1016/j.electacta.2010.03.040
Google Scholar
[4]
Stoller, M. D., Park, S., Zhu, Y., An, J., & Ruoff, R. S. (2008). Graphene-based ultracapacitors. Nano Lett., 8(10), 3498–502.
DOI: 10.1021/nl802558y
Google Scholar
[5]
Bai, J., Bo, X., Luhana, C., & Guo, L. (2011). A novel material based on cupric(II) oxide/macroporous carbon and its enhanced electrochemical property. Electrochim. Acta, 56(21), 7377–7384.
DOI: 10.1016/j.electacta.2011.05.095
Google Scholar
[6]
Tashima, D., Yamamoto, E., Kai, N., Fujikawa, D., Sakai, G., Otsubo, M., & Kijima, T. (2011). Double layer capacitance of high surface area carbon nanospheres derived from resorcinol–formaldehyde polymers. Carbon, 49(14), 4848–4857.
DOI: 10.1016/j.carbon.2011.07.005
Google Scholar
[7]
Lufrano, F., & Staiti, P. (2010). Mesoporous carbon materials as electrodes for electrochemical supercapacitors. Int. J. Electrochem. Sci., 5, 903–916.
DOI: 10.1016/s1452-3981(23)15331-4
Google Scholar
[8]
Morishita, T., Soneda, Y., Tsumura, T., & Inagaki, M. (2006). Preparation of porous carbons from thermoplastic precursors and their performance for electric double layer capacitors. Carbon, 44(12), 2360–2367.
DOI: 10.1016/j.carbon.2006.04.030
Google Scholar
[9]
Xia, X., Shi, L., Liu, H., Yang, L., & He, Y. (2012). A facile production of microporous carbon spheres and their electrochemical performance in EDLC. J. Phys. Chem. Solids, 73(3), 385–390.
DOI: 10.1016/j.jpcs.2011.10.028
Google Scholar
[10]
Wei, L., & Yushin, G. (2011). Electrical double layer capacitors with activated sucrose-derived carbon electrodes. Carbon, 49(14), 4830–4838.
DOI: 10.1016/j.carbon.2011.07.003
Google Scholar
[11]
Liu, H., Zhang, Y., Ke, Q., Ho, K. H., Hu, Y., & Wang, J. (2013). Tuning the porous texture and specific surface area of nanoporous carbons for supercapacitor electrodes by adjusting the hydrothermal synthesis temperature. J. Mater. Chem. A, 1(41), 12962.
DOI: 10.1039/c3ta12649h
Google Scholar
[12]
Liu, Y., Hu, Z., Xu, K., Zheng, X., & Gao, Q. (2008). Surface Modification and Performance of Activated Carbon Electrode Material. Acta Physico-Chimica Sinica, 24(7), 1143–1148.
DOI: 10.1016/s1872-1508(08)60049-2
Google Scholar
[13]
He, X., Li, R., Qiu, J., Xie, K., Ling, P., Yu, M., & Zheng, M. (2012). Synthesis of mesoporous carbons for supercapacitors from coal tar pitch by coupling microwave-assisted KOH activation with a MgO template. Carbon, 50(13), 4911–4921.
DOI: 10.1016/j.carbon.2012.06.020
Google Scholar
[14]
Ismanto, A. E., Wang, S., Soetaredjo, F. E., & Ismadji, S. (2010). Preparation of capacitor's electrode from cassava peel waste. Bioresour. Technol., 101(10), 3534–40.
DOI: 10.1016/j.biortech.2009.12.123
Google Scholar
[15]
Chen, H., Wang, F., Tong, S., Guo, S., & Pan, X. (2012). Porous carbon with tailored pore size for electric double layer capacitors application. Appl. Surf. Sci., 258(16), 6097–6102.
DOI: 10.1016/j.apsusc.2012.03.009
Google Scholar
[16]
Herawan, S. G., Hadi, M. S., Ayob, M. R., & Putra, A. (2013). Characterization of activated carbons from oil-palm shell by CO2 activation with no holding carbonization temperature. Scientific World Journal., 2013, 1-6.
DOI: 10.1155/2013/624865
Google Scholar
[17]
Basri, N. H., Deraman, M., Kanwal, S., Talib, I. a., Manjunatha, J. G., Aziz, A. a., & Farma, R. (2013). Supercapacitors using binderless composite monolith electrodes from carbon nanotubes and pre-carbonized biomass residues. Biomass Bioenerg, 59, 370–379.
DOI: 10.1016/j.biombioe.2013.08.035
Google Scholar
[18]
Farma, R., Deraman, M., Awitdrus, A., Talib, I. a, Taer, E., Basri, N. H., & Hashmi, S. a. (2013). Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors. Bioresour. Technol., 132, 254–61.
DOI: 10.1016/j.biortech.2013.01.044
Google Scholar
[19]
Farma, R., Deraman, M., Awitdrus, Talib, I. A., Omar, R., Manjunatha, J. G., & Dolah, B. N. M. (2013). Physical and Electrochemical Properties of Supercapacitor Electrodes Derived from Carbon Nanotube and Biomass Carbon. Int. J. Electrochem. Sci., 8, 257–273.
DOI: 10.1016/s1452-3981(23)14018-1
Google Scholar
[20]
Awitdrus, Deraman, M., Abu Talib, I., Omar, R., Jumali, M. H. H., Taer, E., & Mohd Saman, M. (2010). Dimension and Total Active Surface Area of Carbon Electrode from Mixtures of Pre-Carbonized Oil Palm Empty Fruit Bunches and Green Petroleum Cokes. Sains Malaysiana, 39(1), 83–86.
DOI: 10.1063/1.4757187
Google Scholar
[21]
Kumar, K., Saxena, R. K., Kothari, R., Suri, D. K., Kaushik, N. K., & Bohra, J. N. (1997). Correlation between adsorption and x-ray diffraction studies on viscose rayon based activated carbon cloth. Carbon, 35(12), 1842–1844.
DOI: 10.1016/s0008-6223(97)87258-2
Google Scholar
[22]
Lee, G.-J., & Pyun, S.-I. (2006). Effect of microcrystallite structures on electrochemical characteristics of mesoporous carbon electrodes for electric double-layer capacitors. Electrochim. Acta, 51(15), 3029–3038.
DOI: 10.1016/j.electacta.2005.08.037
Google Scholar
[23]
Deraman, M. (1993). Carbon pellet prepared from fibres of oil palm empty fruit bunches: A qualitative X-ray diffraction analysis. PORIM Bulletin, 26, 1-5.
Google Scholar
[24]
Deraman, M., Ismail, M. P., & Said, M. M. (1995), Young's modulus of carbon from a mixture of oil palm bunches and latex. J. Mater. Sci. Lett. 14 (11), 781-782.
DOI: 10.1007/bf00278126
Google Scholar
[25]
Deraman, M., & Zakaria, S. (2000). Electrical conductivity of carbon pellets from mixtures of pyropolymer from oil palm bunch and cotton cellulose. Jpn. J. Appl. Phys., 39(12), 1236–1238.
DOI: 10.1143/jjap.39.l1236
Google Scholar
[26]
Deraman, M., Zakaria, S., Murshidi, J. A. (2001), Estimation of crystallinity and crystallite size of cellulose in benzylated fibres of oil palm empty fruit bunches by X-ray diffraction. Jpn. J. Appl. Phys., 40(5A), 3311-3314.
DOI: 10.1143/jjap.40.3311
Google Scholar
[27]
Deraman, M., Omar, R., & Harun, A. G. (1998). Young ' s modulus of carbon from self-adhesive carbon grain of oil palm bunches. J. Mater. Sci. Lett., 17, 2059–2060.
Google Scholar
[28]
Deraman, M., Omar, R., & Zakaria, S. (2002). Electrical and mechanical properties of carbon pellets from acid (HNO3) treated self-adhesive carbon grain from oil palm empty fruit bunch. J. Mater. Sci., 37, 3329–3335.
DOI: 10.1063/1.3515546
Google Scholar
[29]
Taer, E., Deraman, M., & Talib, I. (2011). Preparation of a highly porous binderless activated carbon monolith from rubber wood sawdust by a multi-step activation process for application in supercapacitors. Int. J. Electrochem. Sci., 6, 3301–3315.
DOI: 10.1016/s1452-3981(23)18253-8
Google Scholar
[30]
Kaneko, K., Ishii, C., Ruike, M., & Kuwabara, H. (1992). Origin of superhigh surface area and structures of activated. Carbon, 30(7), 1075–1088.
DOI: 10.1016/0008-6223(92)90139-n
Google Scholar