A New Empirical Equation for Estimating Specific Surface Area of Supercapacitor Carbon Electrode from X-Ray Diffraction

Article Preview

Abstract:

Interest in research of supercapacitor has been in increasing trend because of high demand of supercapacitor application as energy storage device in both systems that require low and high power-energy usage. For supercapacitor using porous carbon electrodes, the energy storage mechanism involves the electrolyte ions in electrodes pores and electronic charges in electrodes to form electric double layers at the electrode-electrolyte interface without undergoes any chemical reaction. The specific surface area of porous electrodes, which affect the performance of supercapacitor, have been widely investigated by many researchers using the nitrogen adsorption-desorption measurement. However, despite its simplicity the X-ray diffraction method is rarely found being used to determine the specific surface area of porous electrodes. Therefore, in the present paper, we propose a new equation which expressed the specific surface area of electrodes as a function the electrode structural parameters obtained from the X-ray diffraction data, and duration of activation time employed during the electrode preparation. This equation is found to produce a satisfactory result and is expected to be beneficial for studying supercapacitor electrode materials.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] Huggins, R. (2000). Supercapacitors and electrochemical pulse sources. Solid State Ionics, 134(1-2), 179–195.

DOI: 10.1016/s0167-2738(00)00725-6

Google Scholar

[2] Niu, C., Sichel, E. K., Hoch, R., Moy, D., & Tennent, H. (1997). High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett., 70(11), 1480.

DOI: 10.1063/1.118568

Google Scholar

[3] Halama, A., Szubzda, B., & Pasciak, G. (2010). Carbon aerogels as electrode material for electrical double layer supercapacitors—Synthesis and properties. Electrochim. Acta, 55(25), 7501–7505.

DOI: 10.1016/j.electacta.2010.03.040

Google Scholar

[4] Stoller, M. D., Park, S., Zhu, Y., An, J., & Ruoff, R. S. (2008). Graphene-based ultracapacitors. Nano Lett., 8(10), 3498–502.

DOI: 10.1021/nl802558y

Google Scholar

[5] Bai, J., Bo, X., Luhana, C., & Guo, L. (2011). A novel material based on cupric(II) oxide/macroporous carbon and its enhanced electrochemical property. Electrochim. Acta, 56(21), 7377–7384.

DOI: 10.1016/j.electacta.2011.05.095

Google Scholar

[6] Tashima, D., Yamamoto, E., Kai, N., Fujikawa, D., Sakai, G., Otsubo, M., & Kijima, T. (2011). Double layer capacitance of high surface area carbon nanospheres derived from resorcinol–formaldehyde polymers. Carbon, 49(14), 4848–4857.

DOI: 10.1016/j.carbon.2011.07.005

Google Scholar

[7] Lufrano, F., & Staiti, P. (2010). Mesoporous carbon materials as electrodes for electrochemical supercapacitors. Int. J. Electrochem. Sci., 5, 903–916.

DOI: 10.1016/s1452-3981(23)15331-4

Google Scholar

[8] Morishita, T., Soneda, Y., Tsumura, T., & Inagaki, M. (2006). Preparation of porous carbons from thermoplastic precursors and their performance for electric double layer capacitors. Carbon, 44(12), 2360–2367.

DOI: 10.1016/j.carbon.2006.04.030

Google Scholar

[9] Xia, X., Shi, L., Liu, H., Yang, L., & He, Y. (2012). A facile production of microporous carbon spheres and their electrochemical performance in EDLC. J. Phys. Chem. Solids, 73(3), 385–390.

DOI: 10.1016/j.jpcs.2011.10.028

Google Scholar

[10] Wei, L., & Yushin, G. (2011). Electrical double layer capacitors with activated sucrose-derived carbon electrodes. Carbon, 49(14), 4830–4838.

DOI: 10.1016/j.carbon.2011.07.003

Google Scholar

[11] Liu, H., Zhang, Y., Ke, Q., Ho, K. H., Hu, Y., & Wang, J. (2013). Tuning the porous texture and specific surface area of nanoporous carbons for supercapacitor electrodes by adjusting the hydrothermal synthesis temperature. J. Mater. Chem. A, 1(41), 12962.

DOI: 10.1039/c3ta12649h

Google Scholar

[12] Liu, Y., Hu, Z., Xu, K., Zheng, X., & Gao, Q. (2008). Surface Modification and Performance of Activated Carbon Electrode Material. Acta Physico-Chimica Sinica, 24(7), 1143–1148.

DOI: 10.1016/s1872-1508(08)60049-2

Google Scholar

[13] He, X., Li, R., Qiu, J., Xie, K., Ling, P., Yu, M., & Zheng, M. (2012). Synthesis of mesoporous carbons for supercapacitors from coal tar pitch by coupling microwave-assisted KOH activation with a MgO template. Carbon, 50(13), 4911–4921.

DOI: 10.1016/j.carbon.2012.06.020

Google Scholar

[14] Ismanto, A. E., Wang, S., Soetaredjo, F. E., & Ismadji, S. (2010). Preparation of capacitor's electrode from cassava peel waste. Bioresour. Technol., 101(10), 3534–40.

DOI: 10.1016/j.biortech.2009.12.123

Google Scholar

[15] Chen, H., Wang, F., Tong, S., Guo, S., & Pan, X. (2012). Porous carbon with tailored pore size for electric double layer capacitors application. Appl. Surf. Sci., 258(16), 6097–6102.

DOI: 10.1016/j.apsusc.2012.03.009

Google Scholar

[16] Herawan, S. G., Hadi, M. S., Ayob, M. R., & Putra, A. (2013). Characterization of activated carbons from oil-palm shell by CO2 activation with no holding carbonization temperature. Scientific World Journal., 2013, 1-6.

DOI: 10.1155/2013/624865

Google Scholar

[17] Basri, N. H., Deraman, M., Kanwal, S., Talib, I. a., Manjunatha, J. G., Aziz, A. a., & Farma, R. (2013). Supercapacitors using binderless composite monolith electrodes from carbon nanotubes and pre-carbonized biomass residues. Biomass Bioenerg, 59, 370–379.

DOI: 10.1016/j.biombioe.2013.08.035

Google Scholar

[18] Farma, R., Deraman, M., Awitdrus, A., Talib, I. a, Taer, E., Basri, N. H., & Hashmi, S. a. (2013). Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors. Bioresour. Technol., 132, 254–61.

DOI: 10.1016/j.biortech.2013.01.044

Google Scholar

[19] Farma, R., Deraman, M., Awitdrus, Talib, I. A., Omar, R., Manjunatha, J. G., & Dolah, B. N. M. (2013). Physical and Electrochemical Properties of Supercapacitor Electrodes Derived from Carbon Nanotube and Biomass Carbon. Int. J. Electrochem. Sci., 8, 257–273.

DOI: 10.1016/s1452-3981(23)14018-1

Google Scholar

[20] Awitdrus, Deraman, M., Abu Talib, I., Omar, R., Jumali, M. H. H., Taer, E., & Mohd Saman, M. (2010). Dimension and Total Active Surface Area of Carbon Electrode from Mixtures of Pre-Carbonized Oil Palm Empty Fruit Bunches and Green Petroleum Cokes. Sains Malaysiana, 39(1), 83–86.

DOI: 10.1063/1.4757187

Google Scholar

[21] Kumar, K., Saxena, R. K., Kothari, R., Suri, D. K., Kaushik, N. K., & Bohra, J. N. (1997). Correlation between adsorption and x-ray diffraction studies on viscose rayon based activated carbon cloth. Carbon, 35(12), 1842–1844.

DOI: 10.1016/s0008-6223(97)87258-2

Google Scholar

[22] Lee, G.-J., & Pyun, S.-I. (2006). Effect of microcrystallite structures on electrochemical characteristics of mesoporous carbon electrodes for electric double-layer capacitors. Electrochim. Acta, 51(15), 3029–3038.

DOI: 10.1016/j.electacta.2005.08.037

Google Scholar

[23] Deraman, M. (1993). Carbon pellet prepared from fibres of oil palm empty fruit bunches: A qualitative X-ray diffraction analysis. PORIM Bulletin, 26, 1-5.

Google Scholar

[24] Deraman, M., Ismail, M. P., & Said, M. M. (1995), Young's modulus of carbon from a mixture of oil palm bunches and latex. J. Mater. Sci. Lett. 14 (11), 781-782.

DOI: 10.1007/bf00278126

Google Scholar

[25] Deraman, M., & Zakaria, S. (2000). Electrical conductivity of carbon pellets from mixtures of pyropolymer from oil palm bunch and cotton cellulose. Jpn. J. Appl. Phys., 39(12), 1236–1238.

DOI: 10.1143/jjap.39.l1236

Google Scholar

[26] Deraman, M., Zakaria, S., Murshidi, J. A. (2001), Estimation of crystallinity and crystallite size of cellulose in benzylated fibres of oil palm empty fruit bunches by X-ray diffraction. Jpn. J. Appl. Phys., 40(5A), 3311-3314.

DOI: 10.1143/jjap.40.3311

Google Scholar

[27] Deraman, M., Omar, R., & Harun, A. G. (1998). Young ' s modulus of carbon from self-adhesive carbon grain of oil palm bunches. J. Mater. Sci. Lett., 17, 2059–2060.

Google Scholar

[28] Deraman, M., Omar, R., & Zakaria, S. (2002). Electrical and mechanical properties of carbon pellets from acid (HNO3) treated self-adhesive carbon grain from oil palm empty fruit bunch. J. Mater. Sci., 37, 3329–3335.

DOI: 10.1063/1.3515546

Google Scholar

[29] Taer, E., Deraman, M., & Talib, I. (2011). Preparation of a highly porous binderless activated carbon monolith from rubber wood sawdust by a multi-step activation process for application in supercapacitors. Int. J. Electrochem. Sci., 6, 3301–3315.

DOI: 10.1016/s1452-3981(23)18253-8

Google Scholar

[30] Kaneko, K., Ishii, C., Ruike, M., & Kuwabara, H. (1992). Origin of superhigh surface area and structures of activated. Carbon, 30(7), 1075–1088.

DOI: 10.1016/0008-6223(92)90139-n

Google Scholar