Nanoglass: Present Challenges and Future Promises

Article Preview

Abstract:

This presentation provides a panoramic overview of the recent progress in nanoglass plasmonics, challenges, excitement, applied interests and the future promises. A glimpse of our gamut research activities with some significant results is highlighted and facilely analyzed. The term 'nanoglass' refers to the science and technology dealing with the manipulation of the physical properties of rare earth doped inorganic glasses by embedding metallic nanoparticles (NPs) or nanoclusters. On the other hand, the word 'plasmonics' refer to the coherent coupling of photons to free electron oscillations (called plasmon) at the interface between a conductor and a dielectric. Nanoglass plasmonis being an emerging concept in advanced optical material of nanophotonics has given photonics the ability to exploit the optical response at nanoscale and opened up a new avenue in metal-based glass optics. There is a vast array of nanoglass plasmonic concepts yet to be explored, with applications spanning solar cells, (bio) sensing, communications, lasers, solid-state lighting, waveguides, imaging, optical data transfer, display and even bio-medicine. Localized surface plasmon resonance (LSPR) can enhance the optical response of nanoglass by orders of magnitude as observed. The luminescence enhancement and surface enhanced Raman scattering (SERS) are new paradigm of research. A thumbnail sketch of the fundamental aspects of SPR, LSPR, SERS and photonic applications of various rare earth doped/co-doped binary glasses containing metallic NPs are presented. The recent development in nanoglass in the context of Malaysia at the outset of international scenario is projected.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

45-58

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Atwater & A. Polman. Nature., 461, 720 (2009).

Google Scholar

[2] S. A. Kalele N. R. Tiwari, S. W. Gosavi & S. K. Kulkarni. J. Nanophot., 1, 012501 (2007).

Google Scholar

[3] M. L. Brongersma & P. G. Kik. Springer, ISBN 978-1-4020-4349-9, UK (2007).

Google Scholar

[4] M. Faraday. Philos.Trans. R. Soc. Lond., 147, 145 (1857).

Google Scholar

[5] G. Mie. Ann. Phys. Lpz., 25, 377 (1908).

Google Scholar

[6] Y. Sun & Y. Xia. Analyst, 128, 686 (2003).

Google Scholar

[7] B. Nikoobakht & M. A. El-Sayed. Chem. Mater., 15, 1957 (2003).

Google Scholar

[8] A. D. McFarland, & R. P. Van Duyne. Nano Lett., 3, 1057 (2003).

Google Scholar

[9] S. K. Ghoshal, M. R. Sahar, M. S. Rohani & S. Sharma. Optoelectronics/Book 2 INTECH Open Access Publisher, 328, Croatia (2011).

Google Scholar

[10] S. K. Ghoshal, M. R. Sahar, M. R. Dousti, S. Sharma, M. S. Rohani, R. Arifin & K. Hamzah. Ind. J. Pure Appl. Phys., 50(8), 555 (2012).

Google Scholar

[11] W. Yang, G. C. Schatz, & R. P. Van Duyne. J. Chem. Phys., 103, 869 (1995).

Google Scholar

[12] S. A. Maier. Springer, Germany (2007).

Google Scholar

[13] A. Polman. Science, 322, 868 (2008).

Google Scholar

[14] G. Seifert, A. Stalmashonak, H. Hofmeister, J. Haug & M. Dubiel. Nanoscale Res. Lett., 4 1380 (2009).

Google Scholar

[15] J. Sancho-Parramon, V. Janicki, P. Dub_cek, M. Karlusic, D. Gracin, M. Jaksic, S. Bernstorff, D. Meljanac & K. Juraic. Opt. Mater., 32, 510 (2010).

Google Scholar

[16] H. G. Silva-Pereyra, J. Arenas-Alatorre, L. Rodriguez-Fernández, A. Crespo-Sosa, J. C. Cheang-Wong, J.A. Reyes-Esqueda & A. Oliver. J. Nanopart. Res., 12, 1787 (2010).

DOI: 10.1007/s11051-009-9735-6

Google Scholar

[17] P. N. Prasad. Wiley, New Jersey, 129 (2004).

Google Scholar

[18] S. A. Maier & H. A. Atwater. J. Appl. Phys., 98, 011101 (2005).

Google Scholar

[19] S. Chen, T. Akai, K. Kadono & T. Yazawa, Appl. Phys. Lett., 79, 3687 (2001).

Google Scholar

[20] H. Zeng, J. Qiu, Z. Ye, C. Zhu & F. Gan. J. Cryst. Grow., 267, 156 (2004).

Google Scholar

[21] F. Gonella & P. Mazzoldi, in: H.S. Nalwa (Ed.), Vol. 1, Academic Press, London, 81 (2000).

Google Scholar

[22] H. Zheng, D. Gao, Zh. Fu, E. Wang, Y. Lei, Y. Tuan & M. Cui. J. Lumin., 131, 423 (2011).

Google Scholar

[23] O. L. Malta, P. A. Santa-Cruz, G. F. De Sa & F. Auzel, J. Lumin., 33, 261 (1985).

Google Scholar

[24] T. Som & B. Karmakar. J. Quantit. Spectrosc. Radiat. Transfer., 112, 2469 (2011).

Google Scholar

[25] R. de Almeida, D. M. da Silva, L. R. P. Kassab & C. B. de Araujo. Opt. Commun., 281, 108 (2008).

Google Scholar

[26] V. A. G. Rivera, Y. Ledemi, S. P. A. Osorio, D. Manzani, Y. Messaddeq, L. A. O. Nunes & E. Marega Jr. J. Non-Cryst. Sol., 358, 399 (2012).

DOI: 10.1016/j.jnoncrysol.2011.10.008

Google Scholar

[27] M. R. Dousti, M. R. Sahar, S. K. Ghoshal, R. J. Amjad & R. Arifin. J. Mol. Struct., 1033, 79 (2013).

Google Scholar

[28] R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz, A. R. Samavati, R. Arifin & S. Naseem. J. Lumin., 136, 145 (2013).

DOI: 10.1016/j.jlumin.2012.11.028

Google Scholar

[29] M. R. Dousti, M. R. Sahar, S. K. Ghoshal, Raja J. Amjad & R. Arifin. J. Non-Cryst. Sol., 358, 2939 (2012).

Google Scholar

[30] M. Fujii, M. Yoshida, Y. Kanzawa, S. Hayashi & K. Yamamoto. Appl. Phys. Lett., 71, 1198 (1997).

Google Scholar

[31] S. Moon, P. R. Watekar, B. H. Kim & W. T. Han. Electron. Lett., 43(2), 85 (2007).

Google Scholar

[32] S. Ju, V. L. Nguyen, P. R. Watekar, B. H. Kim, C. Jeong, S. Boo & W. T. Han. J. Nano. Sci. Nano. Technol., 6, 3555 (2006).

Google Scholar

[33] M. P. Hehlen, N. J. Cockroft, T. R. Gosnell & A. J. Bruce. Phys. Rev. B., 56, 9302 (1997).

Google Scholar

[34] C. Strohh¨ofer & A. Polman. Appl. Phys. Lett., 81, 1414 (2002).

Google Scholar

[35] S. Murai, R. Hattori, K. Fujita & K. Tanaka. Appl. Phys. Exp., 2, 102001 (2009).

Google Scholar

[36] W. L. Barnes, A. Dereux & T. W. Ebbesen. Nature., 424, 824 (2003).

Google Scholar

[37] C. D. Geddes & J. R. Lakowicz. J. Fluoresc., 12, 121 (2002).

Google Scholar

[38] K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz & C. D. Geddes, Current Opn. Biotech., 16, 55 (2005).

DOI: 10.1016/j.copbio.2005.01.001

Google Scholar

[39] A. V. Zayats, I. I. Smolyaniov & A. A. Maradudin. Phys. Reports., 408, 131 (2005).

Google Scholar

[40] J. R. Lakowicz. Anal. Biochem., 298,1 (2001).

Google Scholar

[41] J. R. Lakowicz, Y. Shen, S. D'Auria, J. Malicka, J. Fang, Z. Gryczynski & I. Gryczynski, Anal. Biochem., 301, 261 (2002).

DOI: 10.1006/abio.2001.5503

Google Scholar

[42] E. B. Desurvire. J. Lightwave Tech., 24, 4697 (2006).

Google Scholar

[43] J. A. García-Macedo, G. Valverde, J. Lockard & J. I. Zink. Proc. SPIE., 5361, 117 (2004).

Google Scholar

[44] D. Roy, Z. H. Barber & T. W. Clyne. J. Appl. Phys., 91, 9 (2002).

Google Scholar

[45] R. El-Mallawany. CRC Press (2002).

Google Scholar

[46] A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang & J. Lousteau. Prog. Mat. Sci., 57, 1426 (2012).

Google Scholar

[47] M. R. Sahar, K. Sulhadi & M. S. Rohani. J. Non-Cryst. Sol., 354, 1179 (2008).

Google Scholar

[48] N. K. Giri, A. K. Singh & S. B. Rai. J. Appl. Phys., 101, 033102 (2007).

Google Scholar

[49] L. P. R. Kassab, L. F. Freitas, K. Ozga, M. G. Brik & A. Wojciechowski. Opt. Laser. Tech., 42, 1340 (2010).

Google Scholar

[50] V. A. G. Rivera, S. P. A. Osorio, D. Manzani, Y. Messaddeq, L. A. O. Nunes & E. Marega Jr. Opt. Mater., 33, 888 (2011).

Google Scholar

[51] T. Som & B. Karmakar. Solid State Sci., 13, 887 (2011).

Google Scholar

[52] L. R. P. Kassab, M. E. Camilo, C. T. Amancio, D. M. da Silva & J. R. Martinelli. Opt. Mater., 33 1948 (2011).

Google Scholar

[53] M. R. Dousti, M. R. Sahar, R. J. Amjad, S. K. Ghoshal, A. Khorramnazari, A. D. Basirabad & A. Samavati. Eur. Phys. J. D., 66, 237 (2012).

DOI: 10.1140/epjd/e2012-30089-1

Google Scholar

[54] S. K. Ghoshal, M. R. Sahar, M. R. Dousti, R. Arifin, M. S. Rohani & K. Hamzah. Adv. Mat. Res., 501, 61 (2012).

Google Scholar

[55] O. L. Malta & M. S. C. dos Santos. Chem. Phys. Lett., 174(1), 13 (1990).

Google Scholar

[56] R. J. Amjad, M. R. Sahar, M. R. Dousti, S. K. Ghoshal & M. N. A. Jamaludin. Opt. Exp., 21(12), 14282 (2013).

DOI: 10.1364/oe.21.014282

Google Scholar

[57] L. P. Naranjo, C. B. de Araújo, O. L. Malta, P. A. S. Cruz & L. R. P. Kassab. Appl. Phys. Lett., 87, 241914 (2005).

Google Scholar

[58] R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz & B. A. Tahir. Chin. Phys. Lett., 29, 087304 (2012).

DOI: 10.1088/0256-307x/29/8/087304

Google Scholar

[59] T. Som & B. Karmakar. Plasmonics., 5, 149 (2010).

Google Scholar

[60] M. Fleischmann, P. J. Hendra & A. J. McQuillan. Chem. Phys. Lett., 26, 163 (1974).

Google Scholar

[61] E. J. Blackie, E. C. Le Ru, M. Meyer & P. G. Etchegoin. J. Phys. Chem. C., 111(37), 13794 (2007).

Google Scholar

[62] S. Nie & S.R. Emory. Science., 275(5303), 1102 (1997).

Google Scholar

[63] E. C. Le Ru, M. Meyer & P. G. Etchegoin. J. Phys. Chem. B., 110 (4), 1944 (2006).

Google Scholar

[64] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari & M. S. Feld. Phys. Rev. Lett., 78(9), 1667 (1997).

DOI: 10.1103/physrevlett.78.1667

Google Scholar

[65] S. K. Singh, N. K. Giri, D. K. Rai & S. B. Rai. Solid St. Sci., 12, 1480 (2010).

Google Scholar

[66] M. Moskovits.  Phys. Appl., 12, 1 (2006).

Google Scholar

[67] A. Campion & P. Kambhampati. Chem. Soc. Rev., 27 (4), 241 (1998).

Google Scholar

[68] A. Awang, S. K. Ghoshal, M. R. Sahar, Raja J. Amjad, M. R. Dousti & Fakhra Nawaz. Curr. Appl. Phys., (In Press, 2013).

Google Scholar

[69] R. J. Amjad, M. R. Sahar, S. K. Ghoshal, M. R. Dousti, S. Riaz & B.A. Tahir. J. Lumin., 132, 2714 (2012).

Google Scholar

[70] T. Som & B. Karmakar. Plasmonics., 5, 149 (2010).

Google Scholar

[71] D. S. da Silva, T. A. A. de Assumpção, L. R. P. Kassab & C. B. de Araújo. J. Alloys Comp., (2013, In Press).

Google Scholar

[72] F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua & P. Nordlander. ACS Nano., 2, 707 (2008).

DOI: 10.1021/nn800047e

Google Scholar

[73] G. Upender, R. Sathyavathi, B. Raju, C. Bansal & D. Narayana Rao, J. Mol. Struct., 1012, 56 (2012).

Google Scholar

[74] D. L. Jeanmaire & R. P. van Duyne. J. Electroanal. Chem., 84, 120 (1977).

Google Scholar

[75] G. M. Albrecht & J. A. Creighton. J. Am. Chem. Soc., 99, 5215 (1977).

Google Scholar

[76] K. Willets & R.V. Duyne. Annu. Rev. Phys. Chem., 58, 267 (2007).

Google Scholar

[77] E. L. Ru, M. Dalley & P. Etchegoin. Curr. Appl. Phys., 6, 411 (2006).

Google Scholar

[78] Z. Pan, A. Ueda, R. Aga Jr., A. Burger, R. Mu & S. H. Morgan. J. Non-Cryst. Sol., 356, 1097 (2010).

Google Scholar

[79] Z. Pan, A. Zavalin, A. Ueda, M. Guo, M. Groza, A. Burger, R. Mu & S. H. Morgan. Appl. Spect., 59(6), 782 (2005).

DOI: 10.1366/0003702054280658

Google Scholar

[80] M. R. Dousti, M. R. Sahar, R. J. Amjad, S. K. Ghoshal & A. Awang. J. Lumin., 143, 368 (2013).

Google Scholar

[81] A. Hryciw, Y. C. Jun & M. L. Brongersma. Opt. Express., 17, 185 (2009).

Google Scholar

[82] H. Chen, Y. H. Liu, Y. F. Zhou & Z. H. Jiang. J. Alloys. Compd., 397, 286 (2005).

Google Scholar

[83] T. Sekiya, N. Mochida, A. Ohtsuka & A. Soejima. J. Non-Cryst. Sol., 151, 222 (1992).

Google Scholar

[84] T. Komatsu, H. Tawarayama, H. Mohri & K. Matusita. J. Non-Cryst. Sol., 135, 105 (1991).

Google Scholar

[85] K. A. Alim, V. A. Fonoberov, M. Shamsa & A. A. Balandin. J. App. Phys., 97, 124313 (2005).

Google Scholar