Particle Size Distribution of Cerate-Zirconate Powder Prepared via Three Different Methods

Article Preview

Abstract:

Ceramics powder of BaCe0.54Zr0.36Y0.1O2.95 (BCZY) was synthesized using three different methods namely sol-gel (SG), supercritical fluid (SC) and sol-gel assisted supercritical fluids (SGSF).The respective prepared samples were denoted as S1, S2 and S3. The calcined powder (T= 1100 °C) was analyzed using particle size analyzer (PSA), Pcynometer and scanning electron microscope (SEM). PSA showed a single particle size distribution (PSD) for all samples except for S3 which exhibits bimodial particle distribution. PSD of the samples were in the range of 295-396 nm for the primary powder and 712-820 nm for secondary powder. High relative powder density for S1, S2, S3 were recorded at 95 %, 93 % and 99 %, respectively. Morphology of the calcined powders by SEM micrograph revealed that S1 is in spherical shape, S2 is in cubic structure and S3 showed a mixture of spherical and rod-like structure. It was found that SG and SC produce a single shape of powder with lower density compared with SGSF.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-72

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z.Ž. Lazarević, M. Vijatović, Z. Dohčević-Mitrović, N.Ž. Romčević, M.J. Romčević, N. Paunović, B.D. Stojanović, The characterization of the barium titanate ceramic powders prepared by the Pechini type reaction route and mechanically assisted synthesis, Journal of the European Ceramic Society 30 (2010) 623-628.

DOI: 10.1016/j.jeurceramsoc.2009.08.011

Google Scholar

[2] R. Piticescu, P. Vilarnho, L. Popescu, Perovskite nanostructures obtained by a hydrothermal electrochemical process, Journal of the European Ceramic Society 26 (2006) 2945-2949.

DOI: 10.1016/j.jeurceramsoc.2006.02.010

Google Scholar

[3] E. Fabbri, A. Depifanio, E. Dibartolomeo, S. Licoccia, E. Traversa, Tailoring the chemical stability of Ba(Ce0.8−xZrx)Y0.2O3−δ protonic conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs), Solid State Ionics 179 (2008) 558-564.

DOI: 10.1016/j.ssi.2008.04.002

Google Scholar

[4] Z. Zhong, Stability and conductivity study of the BaCe0.9−xZrxY0.1O2.95 systems, Solid State Ionics 178 (2007) 213-220.

DOI: 10.1016/j.ssi.2006.12.007

Google Scholar

[5] S.E. Bozbag, C. Erkey, Supercritical fluids in fuel cell research and development, The Journal of Supercritical Fluids 62 (2012) 1-31.

DOI: 10.1016/j.supflu.2011.09.006

Google Scholar

[6] K. Byrappa, S. Ohara, T. Adschiri, Nanoparticles synthesis using supercritical fluid technology – towards biomedical applications, Advanced Drug Delivery Reviews 60 (2008) 299-327.

DOI: 10.1016/j.addr.2007.09.001

Google Scholar

[7] J. Kim, D. Kim, B. Veriansyah, J. W. Kang, J.-D. Kim, Metal nanoparticle synthesis using supercritical alcohol, Materials Letters 63 (2009) 1880–1882.

DOI: 10.1016/j.matlet.2009.05.066

Google Scholar

[8] C. Aymonier, L. A. Serani, H. Reveron, Y. Garrabos, F. Cansell, Review of supercritical fluids in organic material science, Journal of Supercritical Fluids 38 (2006) 242-251.

DOI: 10.1016/j.supflu.2006.03.019

Google Scholar

[9] N. Osman, Jani, A.M., Talib, I.A., Synthesis of Yb-doped Ba(Ce,Zr)O3 ceramic powders by sol-gel method., Ionics 12 (2006) 379-384.

DOI: 10.1007/s11581-006-0064-9

Google Scholar

[10] M.A.M. Ishak, A Study On Liquefaction of Pretreted Mukah Balingan Low Rank Malaysia Coal, Chapter 3 : Materials and Methods (2007) 25.

Google Scholar

[11] Z. Shao, W. Zhou, Z. Zhu, Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells, Progress in Materials Science 57 (2012) 804-874.

DOI: 10.1016/j.pmatsci.2011.08.002

Google Scholar

[12] E. Alonso, I. Montequi, S. Lucas, M.J. Cocero, Synthesis of titanium oxide particles in supercritical CO2: Effect of operational variables in the characteristics of the final product, Journal of Supercritical Fluids 39 (2007) 453-461.

DOI: 10.1016/j.supflu.2006.03.006

Google Scholar

[13] A. Caba˜nas, J. Li, P. Blood, T. Chudoba, W.Lojkowski, M. Poliakoff, E. Lester, Synthesis of nanoparticulate yttrium aluminum garnet in supercritical water–ethanol mixtures, Journal of Supercritical Fluids 40 (2007) 284-292.

DOI: 10.1016/j.supflu.2006.06.006

Google Scholar

[14] R.C. Singh, M.P. Singh, O. Singh, P.S. Chandi, Influence of synthesis and calcination temperatures on particle size and ethanol sensing behaviour of chemically synthesized SnO2 nanostructures, Sensors and Actuators B 143 (2009) 226-232.

DOI: 10.1016/j.snb.2009.09.032

Google Scholar

[15] J. Qin, R. Yang, G. Liu, M. Li, Y. Shi, Grain growth and microstructural evolution of yttrium aluminum garnet nanocrystallites during calcination process, Materials Research Bulletin 45 (2010) 1426-1432.

DOI: 10.1016/j.materresbull.2010.06.038

Google Scholar

[16] S. Ricote, N. Bonanos, M.C. Marco de Lucas, G. Caboche, Structural and conductivity study of the proton conductor BaCe (0.9−x)ZrxY0.1O(3−d) at intermediate temperatures, Journal of Power Sources 193 (2009) 189-193.

DOI: 10.1016/j.jpowsour.2008.11.080

Google Scholar

[17] H. Najjar, H. Batis, La–Mn perovskite-type oxide prepared by combustion method: Catalytic activity in ethanol oxidation, Applied Catalysis A: General 383 (2010) 192-201.

DOI: 10.1016/j.apcata.2010.05.048

Google Scholar

[18] H. Patra, S. K. Rout, S. K. Pratihar, S. Bhattacharya, Effect of process parameters on combined EDTA-citrate synthesis of Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite, Powder Technology 209 (2011) 98-104.

DOI: 10.1016/j.powtec.2011.02.015

Google Scholar

[19] R. C. Singh, M. P. Singh, O. Singh, P.S. Chandi, Influence of synthesis and calcination temperatures on particle size and ethanol sensing behaviour of chemically synthesized SnO2 nanostructures, Sensors and Actuators B 143 (2009) 226-232.

DOI: 10.1016/j.snb.2009.09.032

Google Scholar