[1]
Z.Ž. Lazarević, M. Vijatović, Z. Dohčević-Mitrović, N.Ž. Romčević, M.J. Romčević, N. Paunović, B.D. Stojanović, The characterization of the barium titanate ceramic powders prepared by the Pechini type reaction route and mechanically assisted synthesis, Journal of the European Ceramic Society 30 (2010) 623-628.
DOI: 10.1016/j.jeurceramsoc.2009.08.011
Google Scholar
[2]
R. Piticescu, P. Vilarnho, L. Popescu, Perovskite nanostructures obtained by a hydrothermal electrochemical process, Journal of the European Ceramic Society 26 (2006) 2945-2949.
DOI: 10.1016/j.jeurceramsoc.2006.02.010
Google Scholar
[3]
E. Fabbri, A. Depifanio, E. Dibartolomeo, S. Licoccia, E. Traversa, Tailoring the chemical stability of Ba(Ce0.8−xZrx)Y0.2O3−δ protonic conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs), Solid State Ionics 179 (2008) 558-564.
DOI: 10.1016/j.ssi.2008.04.002
Google Scholar
[4]
Z. Zhong, Stability and conductivity study of the BaCe0.9−xZrxY0.1O2.95 systems, Solid State Ionics 178 (2007) 213-220.
DOI: 10.1016/j.ssi.2006.12.007
Google Scholar
[5]
S.E. Bozbag, C. Erkey, Supercritical fluids in fuel cell research and development, The Journal of Supercritical Fluids 62 (2012) 1-31.
DOI: 10.1016/j.supflu.2011.09.006
Google Scholar
[6]
K. Byrappa, S. Ohara, T. Adschiri, Nanoparticles synthesis using supercritical fluid technology – towards biomedical applications, Advanced Drug Delivery Reviews 60 (2008) 299-327.
DOI: 10.1016/j.addr.2007.09.001
Google Scholar
[7]
J. Kim, D. Kim, B. Veriansyah, J. W. Kang, J.-D. Kim, Metal nanoparticle synthesis using supercritical alcohol, Materials Letters 63 (2009) 1880–1882.
DOI: 10.1016/j.matlet.2009.05.066
Google Scholar
[8]
C. Aymonier, L. A. Serani, H. Reveron, Y. Garrabos, F. Cansell, Review of supercritical fluids in organic material science, Journal of Supercritical Fluids 38 (2006) 242-251.
DOI: 10.1016/j.supflu.2006.03.019
Google Scholar
[9]
N. Osman, Jani, A.M., Talib, I.A., Synthesis of Yb-doped Ba(Ce,Zr)O3 ceramic powders by sol-gel method., Ionics 12 (2006) 379-384.
DOI: 10.1007/s11581-006-0064-9
Google Scholar
[10]
M.A.M. Ishak, A Study On Liquefaction of Pretreted Mukah Balingan Low Rank Malaysia Coal, Chapter 3 : Materials and Methods (2007) 25.
Google Scholar
[11]
Z. Shao, W. Zhou, Z. Zhu, Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells, Progress in Materials Science 57 (2012) 804-874.
DOI: 10.1016/j.pmatsci.2011.08.002
Google Scholar
[12]
E. Alonso, I. Montequi, S. Lucas, M.J. Cocero, Synthesis of titanium oxide particles in supercritical CO2: Effect of operational variables in the characteristics of the final product, Journal of Supercritical Fluids 39 (2007) 453-461.
DOI: 10.1016/j.supflu.2006.03.006
Google Scholar
[13]
A. Caba˜nas, J. Li, P. Blood, T. Chudoba, W.Lojkowski, M. Poliakoff, E. Lester, Synthesis of nanoparticulate yttrium aluminum garnet in supercritical water–ethanol mixtures, Journal of Supercritical Fluids 40 (2007) 284-292.
DOI: 10.1016/j.supflu.2006.06.006
Google Scholar
[14]
R.C. Singh, M.P. Singh, O. Singh, P.S. Chandi, Influence of synthesis and calcination temperatures on particle size and ethanol sensing behaviour of chemically synthesized SnO2 nanostructures, Sensors and Actuators B 143 (2009) 226-232.
DOI: 10.1016/j.snb.2009.09.032
Google Scholar
[15]
J. Qin, R. Yang, G. Liu, M. Li, Y. Shi, Grain growth and microstructural evolution of yttrium aluminum garnet nanocrystallites during calcination process, Materials Research Bulletin 45 (2010) 1426-1432.
DOI: 10.1016/j.materresbull.2010.06.038
Google Scholar
[16]
S. Ricote, N. Bonanos, M.C. Marco de Lucas, G. Caboche, Structural and conductivity study of the proton conductor BaCe (0.9−x)ZrxY0.1O(3−d) at intermediate temperatures, Journal of Power Sources 193 (2009) 189-193.
DOI: 10.1016/j.jpowsour.2008.11.080
Google Scholar
[17]
H. Najjar, H. Batis, La–Mn perovskite-type oxide prepared by combustion method: Catalytic activity in ethanol oxidation, Applied Catalysis A: General 383 (2010) 192-201.
DOI: 10.1016/j.apcata.2010.05.048
Google Scholar
[18]
H. Patra, S. K. Rout, S. K. Pratihar, S. Bhattacharya, Effect of process parameters on combined EDTA-citrate synthesis of Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite, Powder Technology 209 (2011) 98-104.
DOI: 10.1016/j.powtec.2011.02.015
Google Scholar
[19]
R. C. Singh, M. P. Singh, O. Singh, P.S. Chandi, Influence of synthesis and calcination temperatures on particle size and ethanol sensing behaviour of chemically synthesized SnO2 nanostructures, Sensors and Actuators B 143 (2009) 226-232.
DOI: 10.1016/j.snb.2009.09.032
Google Scholar