Morphological, Structural and UV Sensing Properties of Fe-Doped ZnO Nanorods

Article Preview

Abstract:

Iron (Fe) doped ZnO nanorods were synthesized on glass substrate using a sol-gel hydrothermal growth method by adopting various concentration ratios of 0.8 at% Fe, 1 at% Fe and 3 at% Fe respectively. The X-ray diffraction (XRD) analysis show that all the grown ZnO nanorods have a hexagonal wurtzite structure and are preferentially oriented along the c-axis perpendicular to the substrate surface. At 3 at% Fe-doping, the crystalline quality and the preferential orientation of ZnO nanorods are improved and below 3 at% Fe-doping concentration crystalline quality and the preferential orientation of ZnO nanorods is weakened in turn. The surface morphology analysis of the samples show that the ZnO nanorods are grown vertically to the substrate surface and highly interconnected. Such interconnected network will facilitates the electron transport along the nanorods axis. Current-voltage and current-time characterization under the exposure of UV light ON/OFF sates with exhibited excellent current gain of 1.12 and good response/recovery time of 30 and 10 s showed that the fabricated device can be used for UV sensing applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

200-204

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.E. Jimenez-Gonzalez, J.A. Soto Urueta, R. Suarez-Parra, Optical and electrical characteristics of aluminum-doped ZnO thin films prepared by sol-gel technique, Journal of Crystal Growth, 192 (1998) 430-438.

DOI: 10.1016/s0022-0248(98)00422-9

Google Scholar

[2] H.S. Park, H.W. Shin, D.H. Yun, H.K. Hong, C.H. Kwon, K. Lee, S.T. Kim, Tin oxide micro gas sensor for detecting CH3SH, Sensors and Actuators: B. Chemical, 25 (1995) 478-481.

DOI: 10.1016/0925-4005(95)85102-x

Google Scholar

[3] Y.G. Seol, T.Q. Trung, O.J. Yoon, I.Y. Sohn, N.E. Lee, Nanocomposites of reduced graphene oxide nanosheets and conducting polymer for stretchable transparent conducting electrodes, Journal of Materials Chemistry, 22 (2012) 23759-23766.

DOI: 10.1039/c2jm33949h

Google Scholar

[4] B. Danouj, S.A. Tahan, E. David, Using a new generation of piezoelectric sensors for partial discharge detection, Measurement: Journal of the International Measurement Confederation, 46 (2013) 660-666.

DOI: 10.1016/j.measurement.2012.09.005

Google Scholar

[5] C.P. Lungu, M. Futsuhara, O. Takai, M. Braic, G. Musa, Noble gas influence on reactive radio frequency magnetron sputter deposition of Tin films, Vacuum, 51 (1998) 635-640.

DOI: 10.1016/s0042-207x(98)00264-4

Google Scholar

[6] P. Souletie, S. Bethke, B.W. Wessels, H. Pan, Growth and characterization of heteroepitaxial ZnO thin films by organometallic chemical vapor deposition, Journal of Crystal Growth, 86 (1990) 248-251.

DOI: 10.1016/0022-0248(90)90724-y

Google Scholar

[7] S. Major, A. Banerjee, K.L. Chopra, Optical and electronic properties of zinc oxide films prepared by spray pyrolysis, Thin Solid Films, 125 (1985) 179-185.

DOI: 10.1016/0040-6090(85)90411-0

Google Scholar

[8] L. Xu, X. Li, Influence of Fe-doping on the structural and optical properties of ZnO thin films prepared by sol–gel method, Journal of Crystal Growth, 312 (2010) 851-855.

DOI: 10.1016/j.jcrysgro.2009.12.062

Google Scholar

[9] B. Deng, Z. Guo, H. Sun, Theoretical study of Fe-doped p-type ZnO, Applied Physics Letters, (2010), 96.

Google Scholar

[10] B. Panigrahy, M. Aslam, D. Bahadur, Effect of Fe doping concentration on optical and magnetic properties of ZnO nanorods, Nanotechnology, (2012), 23.

DOI: 10.1088/0957-4484/23/11/115601

Google Scholar

[11] T.L. Phan, S.C. Yu, R. Vincent, H.M. Bui, T.D. Thanh, V.D. Lam, Y.P. Lee, Influence of Mn doping on structural, optical, and magnetic properties of Zn1-xMnxO nanorods, Journal of Applied Physics, (2010), 108.

DOI: 10.1063/1.3478709

Google Scholar

[12] Z.C. Chen, L.J. Zhuge, X.M. Wu, Y.D. Meng, Initial study on the structure and optical properties of Zn1-xFexO films, Thin Solid Films, 515 (2007) 5462-5465.

DOI: 10.1016/j.tsf.2007.01.015

Google Scholar

[13] K. Sato and H. Katayama-Yoshida, Ferromagnetism in a transition metal atom doped ZnO, Physica E: Low-Dimensional Systems and Nanostructures, 10, (2001), 251-255,.

DOI: 10.1016/s1386-9477(01)00093-5

Google Scholar

[14] X. X. Wei, C. Song, K. W. Geng, F. Zeng, B. He, and F. Pan, Local Fe structure and ferromagnetism in Fe-doped ZnO films, Journal of Physics Condensed Matter, 18, (2006), 7471-7479.

DOI: 10.1088/0953-8984/18/31/037

Google Scholar

[15] Q. Humayun, M. Kashif and U. Hashim, Area-Selective ZnO Thin Film Deposition on Variable Microgap Electrodes and Their Impact on UV Sensing, Journal of Nanomaterials, 2013, (2013), 5.

DOI: 10.1155/2013/301674

Google Scholar

[16] Q. Humayun, M. Kashif and U. Hashim, ZnO thin film deposition on butterfly shaped electrodes for ultraviolet sensing applications, Optik - International Journal for Light and Electron Optics, 124, (2013), 5961-5963.

DOI: 10.1016/j.ijleo.2013.04.119

Google Scholar

[17] Q. Humayun, M. Kashif, and U. Hashim, Structural, Optical, Electrical, and Photoresponse Properties of Postannealed Sn-Doped ZnO Nanorods, Journal of Nanomaterials, 2013, (2013), 8.

DOI: 10.1155/2013/792930

Google Scholar

[18] Q. Humayun, M. Kashif, U. Hashim, and A. Qurashi, Selective growth of ZnO nanorods on microgap electrodes and their applications in UV sensors, Nanoscale research letters, 9, (2014), 29.

DOI: 10.1186/1556-276x-9-29

Google Scholar

[19] Pandiyarajan and B. Karthikeyan, Optical properties of annealing induced post growth ZnO: ZnFe2O4 nanocomposites, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 106, (2013), 247-252.

DOI: 10.1016/j.saa.2012.12.077

Google Scholar

[20] Ahsanulhaq Q, Kim J, Lee J, Hahn Y: Electrical and gas sensing properties of ZnO nanorod arrays directly grown on a four-probe electrode system. Electrochem Commun (2010), 12:475–478.

DOI: 10.1016/j.elecom.2010.01.023

Google Scholar

[21] Ahsanulhaq Q, Kim J-H, Hahn Y-B: Controlled selective growth of ZnO nanorod arrays and their field emission properties. Nanotechnology (2007), 18:485307.

DOI: 10.1088/0957-4484/18/48/485307

Google Scholar

[22] Q. Humayun, M. Kashif, and U. Hashim, Fabrication and characterization of a single-bridge nanorod between microgap electrodes, Microelectronics International, 31, (2014), 104-107.

DOI: 10.1108/mi-12-2012-0084

Google Scholar

[23] R. Menon, A. Chowdhuri, M. Tomar, K. Sreenivas and V. Gupta, Enhanced photo-response of thermally treated Zinc oxide ultra-violet photon detector with furnace method and pulsed laser irradiation, in Sensors, (2009) IEEE, Ed., 437-440.

DOI: 10.1109/icsens.2009.5398263

Google Scholar

[24] K.-P. Kim, D. Chang, S. K. Lim, S.-K. Lee, H.-K. Lyu and D.-K. Hwang, Thermal annealing effects on the dynamic photoresponse properties of Al-doped ZnO nanowires network, Current Applied Physics, 11, (2011), 1311-1314.

DOI: 10.1016/j.cap.2011.03.065

Google Scholar

[25] H. Zhou, G.-J. Fang, N. Liu and X.-Z. Zhao, Effects of thermal annealing on the performance of Al/ZnO nanorods/Pt structure ultraviolet photodetector, Materials Science and Engineering: B, 176, (2011), 740-744.

DOI: 10.1016/j.mseb.2011.03.003

Google Scholar