[1]
J. A. Dahl, B. L. Maddux, and J. E. Hutchison, "Toward greener nanosynthesis," Chemical reviews, 107(2007) 2228-2269.
DOI: 10.1021/cr050943k
Google Scholar
[2]
J. E. Hutchison, "Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology," ACS nano, 2(2008) 395-402.
DOI: 10.1021/nn800131j
Google Scholar
[3]
P. T. Anastas and J. C. Warner, Green chemistry: theory and practice: Oxford University Press,(2000).
Google Scholar
[4]
J. M. DeSimone, "Practical approaches to green solvents," Science, 297(2002) 799-803.
DOI: 10.1126/science.1069622
Google Scholar
[5]
R. A. Gross and B. Kalra, "Biodegradable polymers for the environment," Science, 297(2002) 803-807.
Google Scholar
[6]
M. Poliakoff and P. Anastas, "A principled stance," Nature, 413(2001) 257-257.
DOI: 10.1038/35095133
Google Scholar
[7]
P. Raveendran, J. Fu, and S. L. Wallen, "Completely "green" synthesis and stabilization of metal nanoparticles," Journal of the American Chemical Society, 125(2003) 13940-13941.
DOI: 10.1021/ja029267j
Google Scholar
[8]
S. Shivaji, S. Madhu, and S. Singh, "Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria," Process Biochemistry, 46(2011) 1800-1807.
DOI: 10.1016/j.procbio.2011.06.008
Google Scholar
[9]
G. Rajakumar, A. A. Rahuman, S. M. Roopan, V. G. Khanna, G. Elango, C. Kamaraj, et al., "Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 91(2012) 23-29.
DOI: 10.1016/j.saa.2012.01.011
Google Scholar
[10]
V. Venkatpurwar and V. Pokharkar, "Green synthesis of silver nanoparticles using marine polysaccharide: Study of in-vitro antibacterial activity," Materials Letters, 65(2011) 999-1002.
DOI: 10.1016/j.matlet.2010.12.057
Google Scholar
[11]
S. Kaviya, J. Santhanalakshmi, B. Viswanathan, J. Muthumary, and K. Srinivasan, "Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(2011) 594-598.
DOI: 10.1016/j.saa.2011.03.040
Google Scholar
[12]
A. Nagy and G. Mestl, "High temperature partial oxidation reactions over silver catalysts," Applied Catalysis A: General, 188(1999) 337-353.
DOI: 10.1016/s0926-860x(99)00246-x
Google Scholar
[13]
A. Frattini, N. Pellegri, D. Nicastro, and O. d. Sanctis, "Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes," Materials chemistry and physics, 94(2005) 148-152.
DOI: 10.1016/j.matchemphys.2005.04.023
Google Scholar
[14]
Y. Hayashi, M. Matsuzawa, J. Yamaguchi, S. Yonehara, Y. Matsumoto, M. Shoji, et al., "Large nonlinear effect observed in the enantiomeric excess of proline in solution and that in the solid state," Angewandte Chemie, 118(2006) 4709-4713.
DOI: 10.1002/ange.200601506
Google Scholar
[15]
B. Wiley, Y. Sun, B. Mayers, and Y. Xia, "Shape‐Controlled Synthesis of Metal Nanostructures: The Case of Silver," Chemistry-A European Journal, 11(2005) 454-463.
DOI: 10.1002/chem.200400927
Google Scholar
[16]
N. Shirtcliffe, U. Nickel, and S. Schneider, "Reproducible preparation of silver sols with small particle size using borohydride reduction: for use as nuclei for preparation of larger particles," Journal of colloid and interface science, 211(1999) 122-129.
DOI: 10.1006/jcis.1998.5980
Google Scholar
[17]
U. Nickel, A. zu Castell, K. Pöppl, and S. Schneider, "A silver colloid produced by reduction with hydrazine as support for highly sensitive surface-enhanced Raman spectroscopy," Langmuir, 16(2000) 9087-9091.
DOI: 10.1021/la000536y
Google Scholar
[18]
K.-S. Chou and C.-Y. Ren, "Synthesis of nanosized silver particles by chemical reduction method," Materials chemistry and physics, 64(2000) 241-246.
DOI: 10.1016/s0254-0584(00)00223-6
Google Scholar
[19]
D. D. Evanoff and G. Chumanov, "Size-controlled synthesis of nanoparticles. 1."Silver-only" aqueous suspensions via hydrogen reduction," The Journal of Physical Chemistry B, 108(2004) 13948-13956.
DOI: 10.1021/jp047565s
Google Scholar
[20]
I. Sondi, D. V. Goia, and E. Matijević, "Preparation of highly concentrated stable dispersions of uniform silver nanoparticles," Journal of colloid and interface science, 260(2003) 75-81.
DOI: 10.1016/s0021-9797(02)00205-9
Google Scholar
[21]
G. Merga, R. Wilson, G. Lynn, B. H. Milosavljevic, and D. Meisel, "Redox catalysis on "naked" silver nanoparticles," The Journal of Physical Chemistry C, 111(2007) 12220-12226.
DOI: 10.1021/jp074257w
Google Scholar
[22]
S. Kapoor, D. Lawless, P. Kennepohl, D. Meisel, and N. Serpone, "Reduction and aggregation of silver ions in aqueous gelatin solutions," Langmuir, 10(1994) 3018-3022.
DOI: 10.1021/la00021a026
Google Scholar
[23]
R. Arunachalam, S. Dhanasingh, B. Kalimuthu, M. Uthirappan, C. Rose, and A. B. Mandal, "Phytosynthesis of silver nanoparticles using Coccinia grandis leaf extract and its application in the photocatalytic degradation," Colloids and Surfaces B: Biointerfaces, 94(2012) 226-230.
DOI: 10.1016/j.colsurfb.2012.01.040
Google Scholar
[24]
D. MubarakAli, N. Thajuddin, K. Jeganathan, and M. Gunasekaran, "Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens," Colloids and Surfaces B: Biointerfaces, 85(2011) 360-365.
DOI: 10.1016/j.colsurfb.2011.03.009
Google Scholar
[25]
A. Saxena, R. Tripathi, F. Zafar, and P. Singh, "Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity," Materials Letters, 67(2012) 91-94.
DOI: 10.1016/j.matlet.2011.09.038
Google Scholar
[26]
R. S. Patil, M. R. Kokate, and S. S. Kolekar, "Bioinspired synthesis of highly stabilized silver nanoparticles using Ocimum tenuiflorum leaf extract and their antibacterial activity," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 91(2012) 234-238.
DOI: 10.1016/j.saa.2012.02.009
Google Scholar
[27]
M. Vijayakumar, K. Priya, F. Nancy, A. Noorlidah, and A. Ahmed, "Biosynthesis, characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica," Industrial Crops and Products, 41(2013) 235-240.
DOI: 10.1016/j.indcrop.2012.04.017
Google Scholar
[28]
M. Kowshik, S. Ashtaputre, S. Kharrazi, W. Vogel, J. Urban, S. Kulkarni, et al., "Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3," Nanotechnology, 14(2003) 95.
DOI: 10.1088/0957-4484/14/1/321
Google Scholar
[29]
S. Senapati, A. Ahmad, M. I. Khan, M. Sastry, and R. Kumar, "Extracellular biosynthesis of bimetallic Au–Ag alloy nanoparticles," Small, 1(2005) 517-520.
DOI: 10.1002/smll.200400053
Google Scholar
[30]
A. R. Shahverdi, S. Minaeian, H. R. Shahverdi, H. Jamalifar, and A.-A. Nohi, "Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach," Process Biochemistry, 42(2007) 919-923.
DOI: 10.1016/j.procbio.2007.02.005
Google Scholar
[31]
P. Manivasagan, J. Venkatesan, K. Senthilkumar, K. Sivakumar, and S.-K. Kim, "Biosynthesis, Antimicrobial and Cytotoxic Effect of Silver Nanoparticles Using a Novel Nocardiopsis sp. MBRC-1," BioMed research international, 2013(2013)
DOI: 10.1155/2013/287638
Google Scholar
[32]
K. B. Narayanan and N. Sakthivel, "Coriander leaf mediated biosynthesis of gold nanoparticles," Materials Letters, 62(2008) 4588-4590.
DOI: 10.1016/j.matlet.2008.08.044
Google Scholar
[33]
S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, and M. Sastry, "Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract," Biotechnology progress, 22(2006) 577-583.
DOI: 10.1021/bp0501423
Google Scholar
[34]
S. P. Dubey, M. Lahtinen, H. Särkkä, and M. Sillanpää, "Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids," Colloids and Surfaces B: Biointerfaces, 80(2010) 26-33.
DOI: 10.1016/j.colsurfb.2010.05.024
Google Scholar
[35]
G. M. Nazeruddin, N. R. Prasad, S. R. Waghmare, K. M. Garadkar, and I. S. Mulla, "Extracellular biosynthesis of silver nanoparticle using Azadirachta indica leaf extract and its anti-microbial activity," Journal of Alloys and Compounds, 583(2014) 272-277.
DOI: 10.1016/j.jallcom.2013.07.111
Google Scholar
[36]
S. P. Dubey, M. Lahtinen, and M. Sillanpää, "Tansy fruit mediated greener synthesis of silver and gold nanoparticles," Process Biochemistry, 45(2010) 1065-1071.
DOI: 10.1016/j.procbio.2010.03.024
Google Scholar
[37]
H. Bar, D. K. Bhui, G. P. Sahoo, P. Sarkar, S. P. De, and A. Misra, "Green synthesis of silver nanoparticles using latex o Jatropha curcas," Colloids and surfaces A: Physicochemical and engineering aspects, 339(2009) 134-139.
DOI: 10.1016/j.colsurfa.2009.02.008
Google Scholar
[38]
R. Kumar, S. M. Roopan, A. Prabhakarn, V. G. Khanna, and S. Chakroborty, "Agricultural waste Annona squamosa peel extract: Biosynthesis of silver nanoparticles," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 90(2012) 173-176.
DOI: 10.1016/j.saa.2012.01.029
Google Scholar
[39]
N. Yang and W.-H. Li, "Mango peel extract mediated novel route for synthesis of silver nanoparticles and antibacterial application of silver nanoparticles loaded onto non-woven fabrics," Industrial Crops and Products, 48(2013) 81-88.
DOI: 10.1016/j.indcrop.2013.04.001
Google Scholar
[40]
S. Iravani and B. Zolfaghari, "Green Synthesis of Silver Nanoparticles Using Pinus eldarica Bark Extract," BioMed research international, 2013(2013)
DOI: 10.1155/2013/639725
Google Scholar
[41]
U. B. Jagtap and V. A. Bapat, "Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity," Industrial Crops and Products, 46(2013) 132-137.
DOI: 10.1016/j.indcrop.2013.01.019
Google Scholar
[42]
M. Vanaja and G. Annadurai, "Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity," Applied Nanoscience,2012) 1-7.
DOI: 10.1007/s13204-012-0121-9
Google Scholar
[43]
A. M. Awwad, N. M. Salem, and A. O. Abdeen, "Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity," International Journal of Industrial Chemistry, 4(2013) 1-6.
DOI: 10.1186/2228-5547-4-29
Google Scholar
[44]
S. Das, U. K. Parida, and B. K. Bindhani, "GREEN BIOSYNTHESIS OF SILVER NANOPARTICLES USING MORINGA OLEIFERA L. LEAF," International Journal of Nanotechnology,2013)
Google Scholar
[45]
K. Pavani, K. Gayathramma, A. Banerjee, and S. Suresh, "Phyto-synthesis of Silver Nanoparticles Using Extracts of Ipomoea ndica Flowers," American Journal of Nanomaterials, 1(2013) 5-8.
Google Scholar
[46]
S. Janani, S. Priscilla, S. Subramaniam, R. Raghavan, P. Brindha, S. Aravind, et al., "Spectroscopy Investigation on Chemo-catalytic, Free Radical Scavenging and Bactericidal Properties of Biogenic Silver Nanoparticles Synthesized using Salicornia Brachiata Aqueous Extract," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2013)
DOI: 10.1016/j.saa.2013.08.114
Google Scholar
[47]
M. Zargar, K. Shameli, G. R. Najafi, and F. Farahani, "Plant mediated green biosynthesis of silver nanoparticles using Vitex Negundo L. extract," Journal of Industrial and Engineering Chemistry,2014)
DOI: 10.1016/j.jiec.2014.01.016
Google Scholar