Biological Synthesis of Nanosilver by Using Plants

Article Preview

Abstract:

Nanotechnology is a most promising area that is increasing day by day and play a vital role in environments, biotechnological and biomedical fields. In recent years, the development of effective green chemistry methods for synthesis of various metal nanoparticles has become a main focus of researchers. They have investigated to find out a sustainable technique for production of well-characterized nanoparticles. A variety of chemical and physical methods have been exploited in the synthesis of silver nanoparticles (AgNPs) and these procedures remain expensive, high energy consumption and involve the use of hazardous chemicals. Therefore, there is an essential need to develop environmentally benign and sustainable procedures for synthesis of metallic nanoparticles. Increasing awareness of green chemistry and biological processes has need to develop a rapid, simple, cost-effective and eco-friendly methods. One of the most considered methods is production of nanosilver using plants and plant-derived materials which is the best candidates and suitable for large-scale biosynthesis of silver nanoparticles. Eco-friendly bio-organisms in plant extracts contain proteins, which act as both capping and reducing agents forming of stable and shape-controlled AgNPs. This review describes the recent advancements in the green synthesis of silver nanoparticles by using plants.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

30-34

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. A. Dahl, B. L. Maddux, and J. E. Hutchison, "Toward greener nanosynthesis," Chemical reviews, 107(2007) 2228-2269.

DOI: 10.1021/cr050943k

Google Scholar

[2] J. E. Hutchison, "Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology," ACS nano, 2(2008) 395-402.

DOI: 10.1021/nn800131j

Google Scholar

[3] P. T. Anastas and J. C. Warner, Green chemistry: theory and practice: Oxford University Press,(2000).

Google Scholar

[4] J. M. DeSimone, "Practical approaches to green solvents," Science, 297(2002) 799-803.

DOI: 10.1126/science.1069622

Google Scholar

[5] R. A. Gross and B. Kalra, "Biodegradable polymers for the environment," Science, 297(2002) 803-807.

Google Scholar

[6] M. Poliakoff and P. Anastas, "A principled stance," Nature, 413(2001) 257-257.

DOI: 10.1038/35095133

Google Scholar

[7] P. Raveendran, J. Fu, and S. L. Wallen, "Completely "green" synthesis and stabilization of metal nanoparticles," Journal of the American Chemical Society, 125(2003) 13940-13941.

DOI: 10.1021/ja029267j

Google Scholar

[8] S. Shivaji, S. Madhu, and S. Singh, "Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria," Process Biochemistry, 46(2011) 1800-1807.

DOI: 10.1016/j.procbio.2011.06.008

Google Scholar

[9] G. Rajakumar, A. A. Rahuman, S. M. Roopan, V. G. Khanna, G. Elango, C. Kamaraj, et al., "Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 91(2012) 23-29.

DOI: 10.1016/j.saa.2012.01.011

Google Scholar

[10] V. Venkatpurwar and V. Pokharkar, "Green synthesis of silver nanoparticles using marine polysaccharide: Study of in-vitro antibacterial activity," Materials Letters, 65(2011) 999-1002.

DOI: 10.1016/j.matlet.2010.12.057

Google Scholar

[11] S. Kaviya, J. Santhanalakshmi, B. Viswanathan, J. Muthumary, and K. Srinivasan, "Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(2011) 594-598.

DOI: 10.1016/j.saa.2011.03.040

Google Scholar

[12] A. Nagy and G. Mestl, "High temperature partial oxidation reactions over silver catalysts," Applied Catalysis A: General, 188(1999) 337-353.

DOI: 10.1016/s0926-860x(99)00246-x

Google Scholar

[13] A. Frattini, N. Pellegri, D. Nicastro, and O. d. Sanctis, "Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes," Materials chemistry and physics, 94(2005) 148-152.

DOI: 10.1016/j.matchemphys.2005.04.023

Google Scholar

[14] Y. Hayashi, M. Matsuzawa, J. Yamaguchi, S. Yonehara, Y. Matsumoto, M. Shoji, et al., "Large nonlinear effect observed in the enantiomeric excess of proline in solution and that in the solid state," Angewandte Chemie, 118(2006) 4709-4713.

DOI: 10.1002/ange.200601506

Google Scholar

[15] B. Wiley, Y. Sun, B. Mayers, and Y. Xia, "Shape‐Controlled Synthesis of Metal Nanostructures: The Case of Silver," Chemistry-A European Journal, 11(2005) 454-463.

DOI: 10.1002/chem.200400927

Google Scholar

[16] N. Shirtcliffe, U. Nickel, and S. Schneider, "Reproducible preparation of silver sols with small particle size using borohydride reduction: for use as nuclei for preparation of larger particles," Journal of colloid and interface science, 211(1999) 122-129.

DOI: 10.1006/jcis.1998.5980

Google Scholar

[17] U. Nickel, A. zu Castell, K. Pöppl, and S. Schneider, "A silver colloid produced by reduction with hydrazine as support for highly sensitive surface-enhanced Raman spectroscopy," Langmuir, 16(2000) 9087-9091.

DOI: 10.1021/la000536y

Google Scholar

[18] K.-S. Chou and C.-Y. Ren, "Synthesis of nanosized silver particles by chemical reduction method," Materials chemistry and physics, 64(2000) 241-246.

DOI: 10.1016/s0254-0584(00)00223-6

Google Scholar

[19] D. D. Evanoff and G. Chumanov, "Size-controlled synthesis of nanoparticles. 1."Silver-only" aqueous suspensions via hydrogen reduction," The Journal of Physical Chemistry B, 108(2004) 13948-13956.

DOI: 10.1021/jp047565s

Google Scholar

[20] I. Sondi, D. V. Goia, and E. Matijević, "Preparation of highly concentrated stable dispersions of uniform silver nanoparticles," Journal of colloid and interface science, 260(2003) 75-81.

DOI: 10.1016/s0021-9797(02)00205-9

Google Scholar

[21] G. Merga, R. Wilson, G. Lynn, B. H. Milosavljevic, and D. Meisel, "Redox catalysis on "naked" silver nanoparticles," The Journal of Physical Chemistry C, 111(2007) 12220-12226.

DOI: 10.1021/jp074257w

Google Scholar

[22] S. Kapoor, D. Lawless, P. Kennepohl, D. Meisel, and N. Serpone, "Reduction and aggregation of silver ions in aqueous gelatin solutions," Langmuir, 10(1994) 3018-3022.

DOI: 10.1021/la00021a026

Google Scholar

[23] R. Arunachalam, S. Dhanasingh, B. Kalimuthu, M. Uthirappan, C. Rose, and A. B. Mandal, "Phytosynthesis of silver nanoparticles using Coccinia grandis leaf extract and its application in the photocatalytic degradation," Colloids and Surfaces B: Biointerfaces, 94(2012) 226-230.

DOI: 10.1016/j.colsurfb.2012.01.040

Google Scholar

[24] D. MubarakAli, N. Thajuddin, K. Jeganathan, and M. Gunasekaran, "Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens," Colloids and Surfaces B: Biointerfaces, 85(2011) 360-365.

DOI: 10.1016/j.colsurfb.2011.03.009

Google Scholar

[25] A. Saxena, R. Tripathi, F. Zafar, and P. Singh, "Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity," Materials Letters, 67(2012) 91-94.

DOI: 10.1016/j.matlet.2011.09.038

Google Scholar

[26] R. S. Patil, M. R. Kokate, and S. S. Kolekar, "Bioinspired synthesis of highly stabilized silver nanoparticles using Ocimum tenuiflorum leaf extract and their antibacterial activity," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 91(2012) 234-238.

DOI: 10.1016/j.saa.2012.02.009

Google Scholar

[27] M. Vijayakumar, K. Priya, F. Nancy, A. Noorlidah, and A. Ahmed, "Biosynthesis, characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica," Industrial Crops and Products, 41(2013) 235-240.

DOI: 10.1016/j.indcrop.2012.04.017

Google Scholar

[28] M. Kowshik, S. Ashtaputre, S. Kharrazi, W. Vogel, J. Urban, S. Kulkarni, et al., "Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3," Nanotechnology, 14(2003) 95.

DOI: 10.1088/0957-4484/14/1/321

Google Scholar

[29] S. Senapati, A. Ahmad, M. I. Khan, M. Sastry, and R. Kumar, "Extracellular biosynthesis of bimetallic Au–Ag alloy nanoparticles," Small, 1(2005) 517-520.

DOI: 10.1002/smll.200400053

Google Scholar

[30] A. R. Shahverdi, S. Minaeian, H. R. Shahverdi, H. Jamalifar, and A.-A. Nohi, "Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach," Process Biochemistry, 42(2007) 919-923.

DOI: 10.1016/j.procbio.2007.02.005

Google Scholar

[31] P. Manivasagan, J. Venkatesan, K. Senthilkumar, K. Sivakumar, and S.-K. Kim, "Biosynthesis, Antimicrobial and Cytotoxic Effect of Silver Nanoparticles Using a Novel Nocardiopsis sp. MBRC-1," BioMed research international, 2013(2013)

DOI: 10.1155/2013/287638

Google Scholar

[32] K. B. Narayanan and N. Sakthivel, "Coriander leaf mediated biosynthesis of gold nanoparticles," Materials Letters, 62(2008) 4588-4590.

DOI: 10.1016/j.matlet.2008.08.044

Google Scholar

[33] S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, and M. Sastry, "Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract," Biotechnology progress, 22(2006) 577-583.

DOI: 10.1021/bp0501423

Google Scholar

[34] S. P. Dubey, M. Lahtinen, H. Särkkä, and M. Sillanpää, "Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids," Colloids and Surfaces B: Biointerfaces, 80(2010) 26-33.

DOI: 10.1016/j.colsurfb.2010.05.024

Google Scholar

[35] G. M. Nazeruddin, N. R. Prasad, S. R. Waghmare, K. M. Garadkar, and I. S. Mulla, "Extracellular biosynthesis of silver nanoparticle using Azadirachta indica leaf extract and its anti-microbial activity," Journal of Alloys and Compounds, 583(2014) 272-277.

DOI: 10.1016/j.jallcom.2013.07.111

Google Scholar

[36] S. P. Dubey, M. Lahtinen, and M. Sillanpää, "Tansy fruit mediated greener synthesis of silver and gold nanoparticles," Process Biochemistry, 45(2010) 1065-1071.

DOI: 10.1016/j.procbio.2010.03.024

Google Scholar

[37] H. Bar, D. K. Bhui, G. P. Sahoo, P. Sarkar, S. P. De, and A. Misra, "Green synthesis of silver nanoparticles using latex o Jatropha curcas," Colloids and surfaces A: Physicochemical and engineering aspects, 339(2009) 134-139.

DOI: 10.1016/j.colsurfa.2009.02.008

Google Scholar

[38] R. Kumar, S. M. Roopan, A. Prabhakarn, V. G. Khanna, and S. Chakroborty, "Agricultural waste Annona squamosa peel extract: Biosynthesis of silver nanoparticles," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 90(2012) 173-176.

DOI: 10.1016/j.saa.2012.01.029

Google Scholar

[39] N. Yang and W.-H. Li, "Mango peel extract mediated novel route for synthesis of silver nanoparticles and antibacterial application of silver nanoparticles loaded onto non-woven fabrics," Industrial Crops and Products, 48(2013) 81-88.

DOI: 10.1016/j.indcrop.2013.04.001

Google Scholar

[40] S. Iravani and B. Zolfaghari, "Green Synthesis of Silver Nanoparticles Using Pinus eldarica Bark Extract," BioMed research international, 2013(2013)

DOI: 10.1155/2013/639725

Google Scholar

[41] U. B. Jagtap and V. A. Bapat, "Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity," Industrial Crops and Products, 46(2013) 132-137.

DOI: 10.1016/j.indcrop.2013.01.019

Google Scholar

[42] M. Vanaja and G. Annadurai, "Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity," Applied Nanoscience,2012) 1-7.

DOI: 10.1007/s13204-012-0121-9

Google Scholar

[43] A. M. Awwad, N. M. Salem, and A. O. Abdeen, "Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity," International Journal of Industrial Chemistry, 4(2013) 1-6.

DOI: 10.1186/2228-5547-4-29

Google Scholar

[44] S. Das, U. K. Parida, and B. K. Bindhani, "GREEN BIOSYNTHESIS OF SILVER NANOPARTICLES USING MORINGA OLEIFERA L. LEAF," International Journal of Nanotechnology,2013)

Google Scholar

[45] K. Pavani, K. Gayathramma, A. Banerjee, and S. Suresh, "Phyto-synthesis of Silver Nanoparticles Using Extracts of Ipomoea ndica Flowers," American Journal of Nanomaterials, 1(2013) 5-8.

Google Scholar

[46] S. Janani, S. Priscilla, S. Subramaniam, R. Raghavan, P. Brindha, S. Aravind, et al., "Spectroscopy Investigation on Chemo-catalytic, Free Radical Scavenging and Bactericidal Properties of Biogenic Silver Nanoparticles Synthesized using Salicornia Brachiata Aqueous Extract," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2013)

DOI: 10.1016/j.saa.2013.08.114

Google Scholar

[47] M. Zargar, K. Shameli, G. R. Najafi, and F. Farahani, "Plant mediated green biosynthesis of silver nanoparticles using Vitex Negundo L. extract," Journal of Industrial and Engineering Chemistry,2014)

DOI: 10.1016/j.jiec.2014.01.016

Google Scholar