Zinc Oxide/Carbon Nanotubes Nanocomposite: Synthesis Methods and Potential Applications

Article Preview

Abstract:

Zinc oxide/carbon nanotubes (ZnO/CNTs) nanocomposite has been widely studied in the last few years due to their remarkable properties and versatile applications. Various methods have been presented in order to enhance the excellent properties of ZnO/CNTs nanocomposite. Here we reviewed several synthesis methods including single- and multiple steps to fabricate the ZnO/CNTs nanocomposite and the potential application of the nanocomposite in field emission and solar cell devices.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

45-49

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Klingshirn, ZnO: material, physics and applications, Phys Chem. 8 (2007) 782-803.

Google Scholar

[2] V.A. Coleman and C. Jagadish, Basic properties and applications of ZnO, in: C. Jagadish, S. Pearton (Eds), Zinc oxide bulk, thin films and nanostructures, processing, properties and applications, Elsevier, 2006, pp.1-20.

DOI: 10.1016/b978-008044722-3/50001-4

Google Scholar

[3] C.R. Bhattacharjee, et al., Homogeneous Chemical precipitation route to ZnO nanosphericals, Assam University J. Sci. Technol. 7 (2011) 122-127.

Google Scholar

[4] Q. Ahsanulhaq, A. Umar, Y.B. Hahn, Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties, Nanotechnol. 18 (2007) 1-7.

DOI: 10.1088/0957-4484/18/11/115603

Google Scholar

[5] F.V. Molefe, et al., Effect of reaction time on structural, morphology and optical properties of ZnO nanoflakes prepared by chemical bath deposition method, J. Phys. B. (2013) 185-188.

DOI: 10.1016/j.physb.2013.11.046

Google Scholar

[6] Y.S. Lim, et al., Carbothermal synthesis of ZnO nanocomb structure, Mater. Sci. Eng. B 129 (2006) 100-103.

Google Scholar

[7] N.H. Alvi, et al., Fabrication and characterization of high-brightness light emitting diodes based on n-ZnO nanorods grown by a low-temperature chemical method on p-4H-SiC and p-GaN, Semicond. Sci. Technol. 25 (2010).

DOI: 10.1088/0268-1242/25/6/065004

Google Scholar

[8] Y. Zhang, et al., Zinc oxide nanorod and nanowire for humidity sensor, Appl. Surf. Sci. 242 (2005) 212-217.

Google Scholar

[9] C.J. Lee, et al., Field emission from well-aligned zinc oxide nanowires grown at low temperature, Appl. Phys. Lett., 81 (2002) 3648-3650.

DOI: 10.1063/1.1518810

Google Scholar

[10] E. Galoppini, et al., Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells, J. Phys. Chem. B., 110 (2006) 16159-16161.

DOI: 10.1021/jp062865q

Google Scholar

[11] Y. Zhu, et al., Multiwalled carbon nanotubes beaded with ZnO nanoparticles for ultrafast nonlinear optical switching, Adv. Mater. 18 (2006), 587-592.

DOI: 10.1002/adma.200501918

Google Scholar

[12] Q.G. Du, et al., UV-blocking ZnO nanostructure anti-reflective coatings, Opt. Commun., 285 (2012) 3238-3241.

DOI: 10.1016/j.optcom.2012.02.095

Google Scholar

[13] V.K. Gupta, et al., A novel electrochemical sensor based on ZnO nanoparticle and ionic liquid binder for square wave voltammetric determination of droxidopa in pharmaceutical and urine samples, Sens. Actu. B 186 (2013), 603-609.

DOI: 10.1016/j.snb.2013.06.048

Google Scholar

[14] J.D.W. Madden, Stiffer than steel, Science, 323 (2009) 1571-1572.

Google Scholar

[15] J. Seetharamappa, S. Yellappa, F.D. Souza, Carbon nanotubes, Electrochem. Soc. Interface, (2006) 23-25.

Google Scholar

[16] L. Yang, et al., Vertically aligned carbon nanotubes/diamond double-layered structure for improved field electron emission stability, Thin Solid Films 549 (2013) 42-45.

DOI: 10.1016/j.tsf.2013.06.099

Google Scholar

[17] B. Hsia, et al., Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes, Nanotechnol. 25 (2014) 1-9.

DOI: 10.1088/0957-4484/25/5/055401

Google Scholar

[18] X. Wang, et al., Controlled modification of multiwalled carbon nanotubes with ZnO nanostructures, J. Solid State Chem. 181 (2008) 822-827.

DOI: 10.1016/j.jssc.2008.01.005

Google Scholar

[19] B. Fang, et al., A novel hydrazine electrochemical sensor based on a carbon nanotube-wired ZnO nanoflower-modified electrode, Electrochim. Acta, 55 (2009) 178-182.

DOI: 10.1016/j.electacta.2009.08.036

Google Scholar

[20] M.B. Wayu, et al., Morphology of hydrothermally synthesized ZnO nanoparticles tethered to carbon nanotubes affects electrocatalytic activity for H2O2 detection, Electrochim. Acta 97 (2013) 99-104.

DOI: 10.1016/j.electacta.2013.02.028

Google Scholar

[21] M. Sui, et al., Synthesis of ZnO coated multi-walled carbon nanotubes and their antibacterial activities, Sci. Total Environ. 452-453 (2013) 148-154.

DOI: 10.1016/j.scitotenv.2013.02.056

Google Scholar

[22] Y. Du, C. Hao, G. Wang, Preparation of floral-patterned ZnO/MWCNT heterogeneity structure using microwave irradiation heating method, Mater. Lett. 62 (2008) 30–32.

DOI: 10.1016/j.matlet.2007.04.066

Google Scholar

[23] Y.L. Min, et al., Field emission property of printed CNTs-mixed ZnO nanoneedles, Appl. Surf. Sci. 257 (2011) 6332-6335.

DOI: 10.1016/j.apsusc.2011.01.069

Google Scholar

[24] J. Klanwan, et al., Single-step synthesis of MWCNT/ZnO nanocomposite using co-chemical vapor deposition method, Mater. Lett. 64 (2009) 80-82.

DOI: 10.1016/j.matlet.2009.10.015

Google Scholar

[25] J. Liu, X. Li, L. Dai, Waterassisted growth of aligned carbon nanotube-ZnO heterojunction arrays, Adv. Mater. 18 (2006) 1740-1744.

DOI: 10.1002/adma.200502346

Google Scholar

[26] H.Y. Wang, D.H.C. Chua, Triple layered core-shell structure with surface fluorinated ZnO-carbon nanotube nanocomposites and its electron emission properties, Appl. Surf. Sci. 265 (2012) 66-70.

DOI: 10.1016/j.apsusc.2012.10.108

Google Scholar

[27] Y. Zhang, et al., Carbon nanotube/zinc oxide electrode and gel polymer electrolyte for electrochemical supercapacitors, J. Alloys Compd. 480 (2009) 17-19.

Google Scholar

[28] M. Dutta, D. Basak, Multiwalled carbon nanotubes/ZnO nanowires nanocomposite structure with enhanced ultraviolet emission and faster ultraviolet response, Chem. Phys. Lett. 480 (2009) 253-257.

DOI: 10.1016/j.cplett.2009.09.024

Google Scholar

[29] S. Muhamad, et al., Synthesis of supergrowth VACNTs and nanostructured ZnO by immerse method, Defect and Diffusion Forum1044 (2011) 312-315.

DOI: 10.4028/www.scientific.net/ddf.312-315.1044

Google Scholar

[30] Y. Huang, K. Yu, Z. Zhu, Synthesis and field emission of patterned ZnO nanorods, Curr. Appl. Phys. 7 (2007) 702-706.

DOI: 10.1016/j.cap.2007.03.009

Google Scholar

[31] Y.M. Shyu, F.C.N. Hong, Low-temperature growth and field emission of aligned carbon nanotubes by chemical vapor deposition, Mater. Chem. Phys., 72 (2001) 223-227.

DOI: 10.1016/s0254-0584(01)00441-2

Google Scholar

[32] J.Y. Pan, C.C. Zhu, Y.L. Gao, Enhanced field emission characteristics of zinc oxide mixed carbon nano-tubes films, Appl. Surf. Sci., 254 (2008) 3787-3792.

DOI: 10.1016/j.apsusc.2007.12.002

Google Scholar

[33] X. Yan, B.K. Tay, P. Miele, Field emission from ordered carbon nanotube-ZnO heterojunction arrays, Carbon 46 (2008) 753-758.

DOI: 10.1016/j.carbon.2008.01.027

Google Scholar

[34] C.S. Huang et al., Field emission properties of CNT-ZnO nanocomposite materials, Diamond Relat. Mater. 18 (2009) 452-456.

Google Scholar

[35] A. Ramar, et al., Incorporation of multi-walled carbon nanotubes in ZnO for dye sensitized solar cells, Int. J. Electrochem. Sci. 7 (2012) 11734-11744.

DOI: 10.1016/s1452-3981(23)16500-x

Google Scholar

[36] K. Keem, et al., Photocurrent in ZnO nanowires grown from Au electrodes, Appl. Phys. Lett., 84 (2004) 4376-4378.

DOI: 10.1063/1.1756205

Google Scholar

[37] L.S. Aravinda, et al., ZnO/carbon nanotube nanocomposite for high energy density supercapacitors, Electrochim. Acta, 95 (2013) 119-124.

DOI: 10.1016/j.electacta.2013.02.027

Google Scholar

[38] L.P. Zhu, et al., Preparation, characterization and photocatalytic properties of ZnO-coated multi-walled carbon nanotubes, Mater. Sci. Eng. B 163 (2009) 194-198.

Google Scholar

[39] R. Vyas, et al., CNT-ZnO nanocomposite thin films: O2 and NO2 sensing, Adv. Mater. Res.,585 (2012) 235-239.

Google Scholar