Progress in ZnO Nanostructure for Sensing Based Using Low Temperature Method

Article Preview

Abstract:

Semiconductor ZnO nanostructure with low dimension for gas sensing has been studied due to its features such as good sensitivity, selectivity and show fast response in gas sensing detection. This attractive material could be growth in a variety nanostructure such as one-dimensional nanostructure eg; the nanorods, nanowire, nanobelts and nanotubes and two-dimensional (2D) eg; nanosheet, nanodisk and nanoflakes. ZnO can also be tuned to perform a mixture of nanostructure to improve the performance of its detection. This paper provides the report in synthesis of ZnO nanostructure with a simple method at low temperature for sensor application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

415-418

Citation:

Online since:

June 2015

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. L. Foo, M. Kashif, U. Hashim, W.W. Liu, Effect of different solvents on the structural and optical properties of zinc oxide thin films for optoelectronic applications, Ceram. Int. 40 (2014) 753–761.

DOI: 10.1016/j.ceramint.2013.06.065

Google Scholar

[2] M. Israr-Qadir, S. Jamil-Rana, O. Nur, M. Willander, L. Larsson, P. O. Holtz, Fabrication of ZnO nanodisks from structural transformation of ZnO nanorods through natural oxidation and their emission characteristics, Ceram. Int. 40 (2014)

DOI: 10.1016/j.ceramint.2013.08.017

Google Scholar

[3] R. Saravana Kumar, R. Sathyamoorthy, P. Matheswaran, P. Sudhagar,Y. S. Kang, Growth of novel ZnO nanostructures by soft chemical routes, J. Alloys Compd. 506 (2010) 351–355.

DOI: 10.1016/j.jallcom.2010.06.206

Google Scholar

[4] L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, S. Wang, ZnO nanorod gas sensor for ethanol detection, Sensors Actuators B Chem.162 (2012) 237–243.

DOI: 10.1016/j.snb.2011.12.073

Google Scholar

[5] Y.-J. Li, K.-M. Li, C.-Y. Wang, C.-I. Kuo, L.-J. Chen, Low-temperature electrodeposited Co-doped ZnO nanorods with enhanced ethanol and CO sensing properties, Sensors Actuators B Chem.161 (2012) 734–739.

DOI: 10.1016/j.snb.2011.11.024

Google Scholar

[6] H. S. Al-salman, M. J. Abdullah, Chemical Hydrogen gas sensing based on ZnO nanostructure prepared by RF-sputtering on quartz and PET substrates, Sensors Actuators B Chem. 181(2013) 259–266.

DOI: 10.1016/j.snb.2013.01.065

Google Scholar

[7] I. Y. Y. Bu and C.-C. Yang, High-performance ZnO nanoflake moisture sensor, Superlattices Microstruct. 51 (2012) 745–753.

DOI: 10.1016/j.spmi.2012.03.009

Google Scholar

[8] Q. Shi, Z. Wang, Y. Liu, B. Yang, G. Wang, W. Wang, and J. Zhang, Single-phased emission-tunable Mg-doped ZnO phosphors for white LEDs, J. Alloys Compd. 553 (2013) 172–176.

DOI: 10.1016/j.jallcom.2012.11.135

Google Scholar

[9] M. H. Mamat, M. F. Malek, N. N. Hafizah, Z. Khusaimi, M. Z. Musa, M. Rusop, Fabrication of an ultraviolet photoconductive sensor using novel nanostructured, nanohole-enhanced, aligned aluminium-doped zinc oxide nanorod arrays at low immersion times, Sensors Actuators B Chem. 195 (2014) 609–622.

DOI: 10.1016/j.snb.2014.01.082

Google Scholar

[10] C.L. Hsu, K.C. Chen, T.Y. Tsai, T.J. Hsueh, Fabrication of gas sensor based on p-type ZnO nanoparticles and n-type ZnO nanowires, Sensors Actuators B Chem. 182 (2013) 190–196.

DOI: 10.1016/j.snb.2013.03.002

Google Scholar

[11] D. Sivalingam, J. B. Gopalakrishnan, J. B. B. Rayappan, Structural, morphological, electrical and vapour sensing properties of Mn doped nanostructured ZnO thin films, Sensors Actuators B Chem. 166–167 (2012) 624–631.

DOI: 10.1016/j.snb.2012.03.023

Google Scholar

[12] B. Karthikeyan, T. Pandiyarajan, Simple room temperature synthesis and optical studies on Mg doped ZnO nanostructures, J. Lumin.130 (2010) 2317–2321.

DOI: 10.1016/j.jlumin.2010.07.011

Google Scholar

[13] P. Rai, Y. Yu, Chemical Citrate-assisted hydrothermal synthesis of single crystalline ZnO nanoparticles for gas sensor application, Sensors Actuators B. 173 (2012) 58–65.

DOI: 10.1016/j.snb.2012.05.068

Google Scholar

[14] N. Van Quy, V. A. Minh, N. Van Luan, V. N. Hung, and N. Van Hieu, Gas sensing properties at room temperature of a quartz crystal microbalance coated with ZnO nanorods, Sensors Actuators B Chem. 153(2011) 188–193.

DOI: 10.1016/j.snb.2010.10.030

Google Scholar

[15] L. Zhang, Y. Yin, Large-scale synthesis of flower-like ZnO nanorods via a wet-chemical route, Sensors Actuators B Chem. 183 (2013) 110–116.

DOI: 10.1016/j.snb.2013.03.104

Google Scholar

[16] Y. Zeng, L. Qiao, Y. Bing, M. Wen, B. Zou, W. Zheng, T. Zhang,G. Zou, Development of microstructure CO sensor based on hierarchically porous ZnO nanosheet thin films, Sensors Actuators B Chem.173 (2012) 897–902.

DOI: 10.1016/j.snb.2012.05.090

Google Scholar

[17] P. Bhattacharya, R. R. Das, R. S. Katiyar, Comparative study of Mg doped ZnO and multilayer ZnO/MgO thin films, Thin Solid Films. 447–448 (2004) 564–567.

DOI: 10.1016/j.tsf.2003.07.017

Google Scholar

[18] R. Mohamed, Z. Khusaimi, a. N. Afaah, a. Aadila, M. H. Mamat, M. Rusop, Effect of Annealing Temperature of Magnesium Doped Zinc Oxide Nanorods Growth on Silicon Substrate, J. Nano Res. 26(2013) 33–38.

DOI: 10.4028/www.scientific.net/jnanor.26.33

Google Scholar

[19] H. J. Pandya, S. Chandra, L. Vyas, Integration of ZnO nanostructures with MEMS for ethanol sensor, Sensors Actuators B Chem. 161 (2012) 923–928.

DOI: 10.1016/j.snb.2011.11.063

Google Scholar

[20] S. K. Arya, S. Saha, J. E. Ramirez-Vick, V. Gupta, S. Bhansali, S. P. Singh, Recent advances in ZnO nanostructures and thin films for biosensor applications: review. Anal. Chim. Acta, 737 (2012) 1–21.

DOI: 10.1016/j.aca.2012.05.048

Google Scholar

[21] O. Tari , A. Aronnea, M. L. Addonizio, S. Daliento, E. Fanelli, P. Pernice. Sol–gel synthesis of ZnO transparent and conductive films. Solar Energy Mate & Solar Cell, 105 (2012) 179-186.

DOI: 10.1016/j.solmat.2012.06.016

Google Scholar

[22] L. Znaidi, Sol–gel-deposited ZnO thin films; A review, Mater. Sci. Eng. B. 174 (2010) 18–30.

Google Scholar

[23] X. Hu, Y. Masuda, T. Ohji, K. Kato, Semi-circular shaped ZnO nanowhiskers assemblies deposited using an aqueous solution, Appl. Surf. Sci. 255 (2008) 2329–2332.

DOI: 10.1016/j.apsusc.2008.07.093

Google Scholar

[24] M. H. Mamat, Z. Khusaimi, M. Z. Musa, M. F. Malek, and M. Rusop, Fabrication of ultraviolet photoconductive sensor using a novel aluminium-doped zinc oxide nanorod–nanoflake network thin film prepared via ultrasonic-assisted sol–gel and immersion methods, Sensors Actuators A Phys. 171 (2011) 241–247.

DOI: 10.1016/j.sna.2011.07.002

Google Scholar

[25] M. Breedon, M. B. Rahmani, S.-H. Keshmiri, W. Wlodarski, and K. Kalantar-zadeh, Aqueous synthesis of interconnected ZnO nanowires using spray pyrolysis deposited seed layers, Mater. Lett. 64 (2010) 291–294.

DOI: 10.1016/j.matlet.2009.10.065

Google Scholar

[26] A. U. Ubale,V. P. Deshpande, Effect of manganese inclusion on structural, optical and electrical properties of ZnO thin films, J. Alloys Compd. 500,(2010) 138–143.

DOI: 10.1016/j.jallcom.2010.04.004

Google Scholar

[27] M.F. Malek , M.H. Mamat, Z. Khusaimi, M.Z. Sahdan, M.Z. Musa, A.R. Zainun, A.B. Suriani, N.D. Md Sin, S.B. Abd Hamid, Sonicated sol–gel preparation of nanoparticulate ZnO thin films, J. Alloy. Compd. 582, (2014) 12–21.

DOI: 10.1016/j.jallcom.2013.07.202

Google Scholar